QUASI-ZARISKI TOPOLOGY ON THE QUASI-PRIMARY SPECTRUM OF A MODULE

MAHDI SAMIEI(1) AND HOSEIN FAZAEI MOGHIMI(2)

Abstract. Let R be a commutative ring with a nonzero identity and M be a unitary R-module. A submodule Q of M is called quasi-primary if $Q \neq M$ and, whenever $r \in R$, $x \in M$, and $rx \in Q$, we have $r \in \sqrt{(Q : M)}$ or $x \in \operatorname{rad}Q$. A submodule N of M satisfies the primeful property if and only if M/N is a primeful R-module. We let $\text{q.Spec}(M)$ denote the set of all quasi-primary submodules of M satisfying the primeful property. The aim of this paper is to introduce and study a topology on $\text{q.Spec}(M)$ which is called quasi-Zariski topology of M. We investigate, in particular, the interplay between the properties of this space and the algebraic properties of the module under consideration. Modules whose quasi-Zariski topology is, respectively T_0, T_1 or irreducible, are studied, and several characterizations of such modules are given. Finally, we obtain conditions under which $\text{q.Spec}(M)$ is a spectral space.

1. Introduction

Throughout this paper, R is a commutative ring with a nonzero identity and M is a unitary R-module. For any ideal I of R containing $\text{Ann}(M)$ (the annihilator of M), \overline{I} and \overline{R} will denote $I/\text{Ann}(M)$ and $R/\text{Ann}(M)$, respectively.

Let M be an R-module and N a submodule of M. The colon ideal of M into
N, denoted by $(N : M)$, is the annihilator of M/N as an R-module. P is a prime submodule or a p-prime submodule of M, where $p = (P : M)$, if $P \neq M$ and whenever $rx \in P$ for some $r \in R$ and $x \in M$, we have $r \in p$ or $x \in P$ ([14]).

$\text{Spec}(M)$, the prime spectrum of M, is the set of all prime submodules of M. Also the set of all maximal submodules of M is denoted by $\text{Max}(M)$. It is easily seen that $\text{Max}(M) \subseteq \text{Spec}(M)$. If $p \in \text{Spec}(R)$, $\text{Spec}_p(M)$ denotes the set of all p-prime submodules of M ([15]). $\text{rad}N$ is the intersection of all prime submodules of M containing N and also $\text{rad}N = M$ when M has no prime submodule containing N.

For an ideal I of R, the radical of I is denoted by \sqrt{I}.

Recall that a proper ideal q of R is quasi-primary if $rs \in q$ for $r, s \in R$ implies either $r \in \sqrt{q}$ or $s \in \sqrt{q}$ ([8]). Equivalently, q is a quasi-primary ideal of R if and only if \sqrt{q} is a prime ideal of R [8, Definition 2, p. 176]. For an ideal I of R, the set of all quasi-primary ideals of R containing I is denoted by $V^q(I)$.

An R-module M is said to be primeful if either $M = 0$ or $M \neq 0$ and satisfies the following equivalent conditions (the equivalence is proved in [11, Theorem 2.1]):

(i) The natural map $\psi : \text{Spec}(M) \to \text{Spec}(R)$, given by $\psi(P) = (P : M)$, is surjective;

(ii) For every $p \in V(\text{Ann}(M))$, there exists $P \in \text{Spec}(M)$ such that $(P : M) = p$;

(iii) $p_pM_p \neq M_p$ for every $p \in V(\text{Ann}(M))$;

(iv) $S_p(pM)$, the contraction of p_pM_p in M, is a p-prime submodule of M for every $p \in V(\text{Ann}(M))$;

(v) $\text{Spec}_p(M) \neq \emptyset$ for every $p \in V(\text{Ann}(M))$.

If N is a submodule of M and M/N is a primeful R-module, we say that N satisfies the primeful property.

A proper submodule Q of M is quasi-primary provided that $rx \in Q$, for $r \in R$ and $x \in M$, implies $r \in \sqrt{(Q : M)}$ or $x \in \text{rad}Q$ (this notion has been introduced by the authors [6], [7]). If $\sqrt{(Q : M)} = p$ is a prime ideal, then Q is also called
a p-quasi-primary submodule of M. If N is a proper submodule of an R-module M satisfying the primeful property, then, by definition, we have $\text{rad} N \neq M$ and also, by [11, Proposition 5.3], we have $(\text{rad} N : M) = \sqrt{(N : M)}$. Thus if Q is a quasi-primary submodule of M satisfying the primeful property, then $(Q : M)$ is a quasi-primary ideal of R. In this case, as we mentioned before, Q is called a p-quasi-primary submodule of M where $p = \sqrt{(Q : M)}$.

The quasi-primary spectrum $\text{q.Spec}(M)$ is defined to be the set of all quasi-primary submodules of M satisfying the primeful property ([6], [7]). Also the set of all p-quasi-primary submodules of M satisfying the primeful property is denoted by $\text{q.Spec}_p(M)$. The authors studied the class of modules whose quasi-primary spectrums are empty ([5, section 2]). For example $\text{q.Spec}(Q) = \emptyset$ while $\text{Spec}(Q) = \{0\}$, where Q is the module of rational numbers over the ring of integers \mathbb{Z}. Throughout the rest of this paper, we assume that $\text{q.Spec}(M)$ is non-empty.

An R-module M is called quasi-primaryful if either $M = (0)$ or $M \neq (0)$ and for every $q \in V^q(\text{Ann}(M))$, there exists $Q \in \text{q.Spec}(M)$ such that $\sqrt{(Q : M)} = \sqrt{q}$. This notion has been introduced and extensively studied by the authors in [5].

The Zariski topology on the spectrum of prime ideals of a ring is one of the main tools in algebraic geometry. In the literature, there are many different generalizations of the Zariski topology for modules over commutative rings. [13] defined a Zariski topology on $\text{Spec}(M)$ whose closed sets are $V(N) = \{P \in \text{Spec}(M) \mid (P : M) \supseteq (N : M)\}$ for any submodule N of M. As a new generalization of the Zariski topology, we introduce the quasi-Zariski topology on $\text{q.Spec}(M)$ for any R-module M in which closed sets are varieties $\nu(N) = \{Q \in \text{q.Spec}(M) : \sqrt{(Q : M)} \supseteq \sqrt{(N : M)}\}$ of all submodules N of M.

In section (2), when $\text{q.Spec}(M) \neq \emptyset$, we define a map $\psi^q : \text{q.Spec}(M) \to \text{q.Spec}(\overline{R})$ by $\psi^q(Q) = (Q : M)$ for every $Q \in \text{q.Spec}(M)$. We show that, when $\text{q.Spec}(M)$ is not empty, the injectivity and the surjectivity of the map ψ^q play a key role in our
investigation and give some topological properties for $q\text{Spec}(M)$. We prove that $q\text{Spec}(M)$ is a T_0-space iff $\phi^R \circ \psi^q$ is injective iff $q\text{Spec}(M)$ has at most one p-quasi-primary submodule satisfying the primeful property for every $p \in \text{Spec}(R)$ (Theorem 2.1 and Proposition 3.2 (5)).

In section (3), and assuming suitable conditions for each result, we investigate when this space is connected (Theorem 3.1), T_0 or T_1 (Proposition 3.2 and Theorem 3.2) and irreducible (Corollary 3.2). Finally, we investigate this topological space $q\text{Spec}(M)$ of a module M from the point of view of spectral spaces, topological spaces each of which is homeomorphic to $\text{Spec}(S)$ for some ring S. [10] has characterized spectral spaces as quasi-compact T_0-spaces W such that W has a quasi-compact open base closed under finite intersection and each irreducible closed subset of W has a generic point. We follow the Hochster’s characterization closely in discussing whether $q\text{Spec}(M)$ of a module M is a spectral space.

We discover that when $q\text{Spec}(M) \neq \emptyset$, the injectivity and the surjectivity of the map ψ^q of $q\text{Spec}(M)$ play, respectively, important roles for $q\text{Spec}(M)$ being spectral. We prove that if ψ^q is surjective, then $q\text{Spec}(M)$ is almost spectral in the sense that $q\text{Spec}(M)$ satisfies all the conditions to be a spectral space except for, possibly, that $q\text{Spec}(M)$ is a T_0-space (Proposition 3.3 (4) and Theorems 3.7, 3.4 (1)). We show that if ψ^q is surjective, then $q\text{Spec}(M)$ is a spectral space iff $q\text{Spec}(M)$ is a T_0-space iff $\phi^R \circ \psi^q$ is injective (Theorem 3.9).

2. Surjectivity and injectivity of spectral maps

In this section, we introduce a commutative square of spectral maps that the surjectivity of two of its sides determine the class of quasi-primaryful modules. In fact every non-zero quasi-primaryful modules possess the non-empty quasi-primary spectrum with a surjective natural map.

The saturation of a submodule N of M with respect to a prime ideal p of R is the
contraction of N_p in M and designated by $S_p(N)$. It is known that $S_p(N) = \{m \in M \mid cm \in N \text{ for some } c \in R - p\}$ ([12]).

Lemma 2.1. Let M be an R-module and $Q \in \text{q.Spec}_p(M)$. Then $S_p(pM)$ is a p-prime submodule of M. In particular, the map $\phi^M : \text{q.Spec}(M) \to \text{Spec}(M)$ defined by $\phi^M(Q) = S_p(pM)$, is well-defined.

Proof. By [12, Corollary 3.7], it suffices to show that $p_pM_p \neq M_p$ where $p = \sqrt{(Q : M)}$. It is clear that $\sqrt{(Q : M)}M = (\text{rad}Q : M)M \subseteq \text{rad}Q$ and so $(\text{rad}Q : M)_pM_p \subseteq (\text{rad}Q)_p$. By [6, Theorem 2.15], $(\text{rad}Q)_p = \text{rad}Q_p$ is a prime submodule of M_p and hence $p_pM_p \subseteq \text{rad}Q_p \neq M_p$. It follows that $S_p(pM)$ is a p-prime submodule of M. □

To prepare our way for this section, it is convenient to introduce the following spectral maps:

$$
\begin{array}{ccc}
\text{q.Spec}(M) & \overset{\psi^q}{\longrightarrow} & \text{q.Spec}(R) \\
\phi^M \downarrow & & \phi^R \downarrow \\
\text{Spec}(M) & \overset{\psi}{\longrightarrow} & \text{Spec}(R)
\end{array}
$$

where $\psi^q(Q) = (Q : M)$, $\psi(N) = (N : M)$, $\phi^R(\overline{q}) = \sqrt{q}$ and $\phi^M(Q) = S_p(pM)$ with $p = \sqrt{(Q : M)}$.

It is clear that for a non-zero R-module M, the above diagram is commutative; i.e., $\phi^R \circ \psi^q = \psi \circ \phi^M$. Indeed, suppose $Q \in \text{q.Spec}(M)$ and $p = \sqrt{(Q : M)}$. It follows from Lemma 2.1 that $(S_p(pM) : M) = p$, i.e., $\psi \phi^M(Q) = \overline{p}$. On the other hand, by definition, $\phi^R \circ \psi^q(Q) = \overline{p}$, as required.

It is easy to see that the surjectivity of $\phi^R \circ \psi^q$ is naturally equivalent to M being a quasi-primaryful module.

Proposition 2.1. (1) Let p be a prime ideal of a ring R and let M be an R-module. If the map ψ^q is injective, then every p-prime submodule of M satisfying the primeful property is of the form $S_p(pM)$.

(2) If every prime submodule of \(M \) satisfies the primeful property then the map \(\phi^M \) is surjective.

Proof. (1). Suppose \(\psi^q \) is injective. Let \(P \) be a \(p \)-prime submodule of \(M \) satisfying the primeful property. Then \(S_p(pM) \subseteq S_p(P) = P \neq M \). It follows from [12, Proposition 2.4] that \(S_p(pM) \) is a \(p \)-prime submodule of \(M \). Since \(P \) satisfies the primeful property, clearly \(S_p(pM) \) also does. Thus, we have \(\psi^q(S_p(pM)) = \psi^q(P) \) and hence \(\psi^q(P) \) is \(\psi^q \)-prime submodule of \(M \).

Recall that for any submodule \(N \) of \(M \),

\[
\nu(N) = \{ Q \in q.\text{Spec}(M) : \sqrt{(Q : M)} \supseteq \sqrt{(N : M)} \}.
\]

Theorem 2.1. The following statements are equivalent for any \(R \)-module \(M \).

1. \(\phi^R \circ \psi^q \) is injective;
2. If \(\nu(N) = \nu(K) \), then \(N = K \), for any \(N, K \in q.\text{Spec}(M) \);
3. \(|q.\text{Spec}_p(M)| \leq 1 \) for any \(p \in \text{Spec}(R) \);
4. \(\phi^M \) is injective.

Moreover, if every prime submodule of \(M \) satisfies the primeful property, then the above statements are equivalent to:

5. \(\phi^M \) is bijective.

Proof. (1) \(\Rightarrow \) (2) Suppose that \(\nu(N) = \nu(K) \) for \(N, K \in q.\text{Spec}(M) \). By definition, we have then \(\sqrt{(N : M)} = \sqrt{(K : M)} \); i.e., \(\phi^R \circ \psi^q(N) = \phi^R \circ \psi^q(K) \). Now the injectivity of \(\phi^R \circ \psi^q \) implies that \(N = K \), so we have proved (2).

(2) \(\Rightarrow \) (3). Let \(N, K \in q.\text{Spec}_p(M) \). Then \(\sqrt{(N : M)} = \sqrt{(K : M)} \) implies that \(\nu(N) = \nu(K) \). Thus, \(N = K \) by (2).

(3) \(\Rightarrow \) (4). Suppose \(Q, Q' \in q.\text{Spec}(M) \) such that \(p = \sqrt{(Q : M)}, p' = \sqrt{(Q' : M)} \).

(4) \(\Rightarrow \) (5) Since \(\phi^M \) is injective, for any \(N \in q.\text{Spec}(M) \), \(\phi^M(N) \in q.\text{Spec}(M) \). Thus, \(\phi^M \) is also surjective, and hence bijective.
and \(\phi^M(Q) = \phi^M(Q') \). Then \(S_p(pM) = S_{p'}(p'M) \) and Lemma 2.1 show that \(S_p(pM) \)
and \(S_{p'}(p'M) \) are \(p \)-prime submodules of \(M \). Thus \(Q, Q' \in q.\text{Spec}_p(M) \) and hence (3)
implies that \(Q = Q' \).

(4) \(\Rightarrow \) (1). Suppose \(\phi^R \circ \psi^q(Q) = \phi^R \circ \psi^q(Q') \) for some \(Q \in q.\text{Spec}_p(M) \) and \(Q' \in q.\text{Spec}_{p'}(M) \). Thus \(p = p' \) and so \(\phi^M(Q) = \phi^M(Q') \). This implies that \(Q = Q' \).

(4) \(\Rightarrow \) (5) is clear where every prime submodule of \(M \) satisfies the primeful property.

An \(R \)-module \(M \) is said to be multiplication if for every submodule \(N \) of \(M \), there
exists an ideal \(I \) of \(R \) such that \(N = IM \) ([4]). In this case, we can take \(I = (N : M) \).

An \(R \)-module \(M \) is called content if for every family \(\{I_\lambda \mid \lambda \in \Lambda\} \) of ideals of \(R \), \((\cap_{\lambda \in \Lambda} I_\lambda)M = \cap_{\lambda \in \Lambda} (I_\lambda M) \) ([16]). For example faithful multiplication modules and
projective modules are content modules [4, Theorem 1.6] and [1, Theorem 2.1 and
Theorem 3.1].

Let \(M \) be a finitely generated module over a ring \(R \). Then \(M \) is called Laskerian if
every submodule of \(M \) is the intersection of a finite number of primary submodules
([9]). It is well-known that every finitely generated module over a Noetherian ring is
Laskerian. However the converse is not true in general [9, Example 4.2].

Theorem 2.2. Let \(M \) be an \(R \)-module and the map \(\phi^R \circ \psi^q \) be injective.

(1) Let \(M \) be a Laskerian module and every primary submodule of \(M \) satisfies the
primeful property. Then every quasi-primary submodule of \(M \) satisfying the
primeful property is primary.

(2) Let \(M \) be a flat content \(R \)-module. Then \(Q = (Q : M)M \) for every \(Q \in q.\text{Spec}(M) \).

(3) If \(M \) is free, then \(\phi^R \circ \psi^q \) is bijective.

Proof. Let \(Q \in q.\text{Spec}(M) \) and \(\cap_{i=1}^t N_i \) be a primary decomposition for \(Q \). Since
\(\sqrt{(Q : M)} \) is a prime ideal of \(R \),
\[
\sqrt{(N_j : M)} \subseteq \sqrt{(Q : M)} = \bigcap_{i=1}^{t} \sqrt{(N_i : M)} \subseteq \sqrt{(N_j : M)}
\]

for some \(1 \leq j \leq t\). Since \(N_j\) satisfies the primeful property, we have \(N_j \in \text{q.Spec}(M)\) and so the injectivity of \(\phi^R \circ \psi^q\) implies that \(Q = N_j\).

(2). Suppose \(\phi^R \circ \psi^q\) is injective and \(Q \in \text{q.Spec}_p(M)\). By Theorem 2.1, it suffices to show that \((Q : M)M \in \text{q.Spec}_p(M)\). It is easy to see directly that \(\sqrt{((Q : M)M : M)} = \sqrt{(Q : M)} = p\) and \((Q : M)M\) satisfies the primeful property. It remains to show that \((Q : M)M\) is quasi-primary. Let \(rx \in (Q : M)M\) for \(r \in R\) and \(x \notin \text{rad}((Q : M)M)\). Since \(M\) is flat content, \(\text{rad}((Q : M)M) = \bigcap_{p \supseteq (Q : M)} (pM) = (\bigcap_{p \supseteq (Q : M)} p)M = \sqrt{(Q : M)}M = pM\) and hence \(rx \in pM\) and \(x \notin pM\). On the other hand, \(\text{rad}Q\) is a proper submodule of \(M\), because \(Q\) satisfies the primeful property. Thus \(pM \neq M\) is a \(p\)-prime submodule of \(M\), by [14, Theorem 3], and so \(r \in p\), i.e. \((Q : M)M\) is a \(p\)-quasi-primary submodule of \(M\).

(3). By [5, Theorem 4.3(1)], free modules are quasi-primaryful and hence the proof is easy. \(\Box\)

3. SOME TOPOLOGICAL PROPERTIES OF q.Spec(M)

Recall that for any submodule \(N\) of an \(R\)-module \(M\), \(\nu(N)\) is the set of all quasi-primary submodules \(Q\) of \(M\) satisfying the primeful property, namely \(\sqrt{(Q : M)} \supseteq \sqrt{(N : M)}\). We begin this section by showing that if \(\eta(M)\) denotes the collection of all subsets \(\nu(N)\) of \(\text{q.Spec}(M)\), then \(\eta(M)\) satisfies the axioms for the closed subsets of a topological space on \(\text{q.Spec}(M)\), called quasi-Zariski topology.

Lemma 3.1. Let \(M\) be an \(R\)-module. Then for submodules \(N, N'\) and \(\{N_i \mid i \in I\}\) of \(M\) we have

1. \(\nu(0) = \text{q.Spec}(M)\) and \(\nu(M) = \emptyset\).
2. \(\bigcap_{i \in I} \nu(N_i) = \nu((\bigcap_{i \in I} (N_i : M))M)\).
3. \(\nu(N) \cup \nu(N') = \nu(N \cap N')\).
Proof. (1) and (3) are trivial. (2) follows from the following implications:

\[Q \in \bigcap_{i \in I} \nu(N_i) \quad \Rightarrow \quad \sqrt{(Q : M)} \supseteq \sqrt{(N_i : M)} \quad \forall i \in I \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq (N_i : M) \quad \forall i \in I \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq \sum_{i \in I} (N_i : M) \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq (\sum_{i \in I} (N_i : M))M \]
\[\Rightarrow \quad (\sqrt{(Q : M)}M : M) \supseteq ((\sum_{i \in I} (N_i : M))M : M) \]
\[\Rightarrow \quad ((\text{rad}Q : M)M : M) \supseteq ((\sum_{i \in I} (N_i : M))M : M) \]
\[\Rightarrow \quad (\text{rad}Q : M) \supseteq ((\sum_{i \in I} (N_i : M))M : M) \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq \sqrt{((\sum_{i \in I} (N_i : M))M : M)} \]
\[\Rightarrow \quad Q \in \nu((\sum_{i \in I} (N_i : M))M). \]

For the reverse inclusion we have

\[Q \in \nu((\sum_{i \in I} (N_i : M))M) \quad \Rightarrow \quad \sqrt{(Q : M)} \supseteq \sqrt{((\sum_{i \in I} (N_i : M))M : M)} \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq ((\sum_{i \in I} (N_i : M))M : M) \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq ((N_i : M)M : M) \quad \forall i \in I \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq (N_i : M) \quad \forall i \in I \]
\[\Rightarrow \quad \sqrt{(Q : M)} \supseteq \sqrt{(N_i : M)} \quad \forall i \in I \]
\[\Rightarrow \quad Q \in \bigcap_{i \in I} \nu(N_i) \]

□
Let Y be a subset of $\text{q.Spec}(M)$ for an R-module M. We will denote the intersection of all elements in Y by $\xi(Y)$ and the closure of Y in $\text{q.Spec}(M)$ with respect to the quasi-Zariski topology by $\text{cl}(Y)$. In the following Lemma, we gather some basic facts about the varieties.

Lemma 3.2. Let M be an R-module. Let N, N' and $\{N_i \mid i \in I\}$ be submodules of M. Then the following hold.

1. If $N \subseteq N'$, then $\nu(N') \subseteq \nu(N)$.
2. $\nu(\text{rad} N) \subseteq \nu(N)$ and equality holds if M is multiplication.
3. $\nu(N) = \nu(\sqrt{(N : M)}M)$.
4. If $\sqrt{(N : M)} = \sqrt{(N' : M)}$, then $\nu(N) = \nu(N')$. The converse is also true if both $N, N' \in \text{q.Spec}(M)$.
5. $\nu(N) = \bigcup_{(N : M) \subseteq p \in \Spec(R)} \text{q.Spec}_p(M)$.
6. Let Y be a subset of $\text{q.Spec}(M)$. Then $Y \subseteq \nu(N)$ if and only if $\sqrt{(N : M)} \subseteq \sqrt{(\xi(Y) : M)}$.

Proof. (1) is clear.

(2). $\nu(\text{rad} N) \subseteq \nu(N)$ is clearly true by (1). The equality can be deduced from the fact $\text{rad} N = \sqrt{(N : M)}$, where N is a submodule of a multiplication module M([4, Theorem 2.12]).

(3). Let N be a proper submodule of M. Then

$$Q \in \nu(N) \implies \sqrt{(Q : M)}M \supseteq \sqrt{(N : M)}M$$

$$\implies \text{rad} Q \supseteq \sqrt{(N : M)}M$$

$$\implies \sqrt{(Q : M)} \supseteq \sqrt{(N : M)}M : M$$

$$\implies \sqrt{(Q : M)} \supseteq \sqrt{(\sqrt{(N : M)}M : M)}$$

$$\implies Q \in \nu(\sqrt{(N : M)}M).$$
Thus $\nu(N) \subseteq \nu(\sqrt{(N : M)M})$. For the reverse inclusion, we have

$$Q \in \nu(\sqrt{(N : M)M}) \Rightarrow \sqrt{(Q : M)} \supseteq \sqrt{(\sqrt{(N : M)M : M})}$$
$$\Rightarrow \sqrt{(Q : M)} \supseteq (\sqrt{(N : M)M : M})$$
$$\Rightarrow \sqrt{(Q : M)} \supseteq \sqrt{(N : M)}$$
$$\Rightarrow Q \in \nu(N)$$

Finally, (4), (5) and (6) are clearly true by definitions. □

Proposition 3.1. Let M be an R-module.

1. $(\phi^R)^{-1}(V(\mathfrak{I})) = \nu(\mathfrak{I})$ for every ideal \mathfrak{I} of R containing Ann(M). In particular,
 $$(\phi^R \circ \psi^q)^{-1}(V(\mathfrak{I})) = (\psi^q)^{-1}(\nu(\mathfrak{I})).$$

2. $\phi^R(\nu(\mathfrak{I})) = V(\mathfrak{I})$ and $\phi^R(q.\text{Spec}(R) - \nu(I)) = \text{Spec}(R) - V(\mathfrak{I})$ i.e. ϕ^R is both closed and open.

3. $(\phi^M)^{-1}(V(N)) = \nu(N)$, for every submodule N of M; i.e. the map ϕ^M is continuous.

4. The natural maps ψ^q and $\phi^R \circ \psi^q$ are continuous with respect to the quasi-Zariski topology; more precisely for every ideal \mathfrak{I} of R containing Ann(M),
 $$(\phi^R \circ \psi^q)^{-1}(V(\mathfrak{I})) = (\psi^q)^{-1}(\nu(\mathfrak{I})) = \nu(IM).$$

5. Let M be a quasi-primaryful R-module. If $\varphi = \phi^R \circ \psi^q$, then $\varphi(\nu(N)) = V(\sqrt{(N : M)})$ and $\varphi(q.\text{Spec}(M) - \nu(N)) = \text{Spec}(R) - V(\sqrt{(N : M)})$ i.e. φ is both closed and open.

6. $\varphi = \phi^R \circ \psi^q$ is bijective if and only if it is a homeomorphism.
Proof. (1). Let \(I \) be an ideal of \(R \) containing \(\text{Ann}(M) \). Then

\[
\overline{q} \in (\phi^R)^{-1}(V(\overline{T})) \iff \phi^R(\overline{q}) \in V(\overline{T}) \\
\iff \sqrt{\overline{q}} \supseteq \overline{T} \\
\iff \sqrt{\overline{q}} \supseteq I \\
\iff q \in \nu(\overline{T}).
\]

(2). As we have seen in (1), \(\phi^R \) is a continuous map such that \((\phi^R)^{-1}(V(I)) = \nu(I) \) for every ideal \(I \) of \(R \) containing \(\text{Ann}(M) \). It follows that \(\phi^R(\nu(\overline{T})) = \phi^R((\phi^R)^{-1}(V(\overline{T}))) = V(\overline{T}) \) as \(\phi^R \) is surjective. Similarly,

\[
\phi^R(q, \text{Spec}(\overline{R}) - \nu(\overline{T})) = \phi^R((\phi^R)^{-1}(\text{Spec}(\overline{R})) - (\phi^R)^{-1}(V(\overline{T}))) \\
= \phi^R((\phi^R)^{-1}(\text{Spec}(\overline{R}) - V(\overline{T})) \\
= \phi^R(\nu(\overline{I})) = \nu(\overline{I}).
\]

(3). Suppose \(Q \in (\phi^M)^{-1}(V(N)) \). Then \(\phi^M(Q) \in V(N) \) and so \(p = (S_p(pM) : M) \supseteq (N : M) \), in which \(p = \sqrt{(Q : M)} \). Hence \(\sqrt{(Q : M)} \supseteq \sqrt{(N : M)} \) and so \(Q \in \nu(N) \). The argument is reversible and so \(\phi^M \) is continuous.

(4). It follows from [13, Proposition 3.1] that \(\psi \) is a continuous map with \(\psi^{-1}(V(\overline{T})) = V(IM) \) for every ideal \(I \) of \(R \) containing \(\text{Ann}(M) \). Also, we showed that \(\phi^R \psi^q = \psi \circ \phi^M \). This implies that \(\psi^q \) and \(\phi^R \circ \psi^q \) are also continuous and \((\phi^R \circ \psi^q)^{-1}(V(\overline{T})) = (\psi^q)^{-1}(\nu(\overline{T})) = \nu(IM) \) for every ideal \(I \) of \(R \) containing \(\text{Ann}(M) \), by (1) and (3).

(5). Take \(\varphi = \phi^R \circ \psi^q \). Since \(M \) is quasi-primaryful, \(\varphi \) is surjective. Also by (4), \(\varphi \) is a continuous map such that \(\varphi^{-1}(V(\overline{T})) = \nu(IM) \) for every ideal \(I \) of \(R \) containing \(\text{Ann}(M) \). Hence, by Lemma 3.2(3), for every submodule \(N \) of \(M \), \(\varphi^{-1}(V(\sqrt{(N : M)})) = \nu(\sqrt{(N : M)}M) = \nu(N) \). Since the map \(\varphi \) is surjective, we have \(\varphi(\nu(N)) = \varphi \circ \varphi^{-1}(V(\sqrt{(N : M)})) = V(\sqrt{(N : M)}) \). Similarly, we conclude
that

\[\varphi(q.\text{Spec}(M) - \nu(N)) = \varphi(\varphi^{-1}(\text{Spec}(\overline{R})) - (\varphi)^{-1}(V(\sqrt{(N : M)}))) \]

\[= \varphi((\varphi)^{-1}(\text{Spec}(\overline{R}) - V(\sqrt{(N : M)}))) \]

\[= \varphi(\varphi^{-1}(\text{Spec}(\overline{R}) - V(\sqrt{(N : M)}))) \]

\[= \text{Spec}(\overline{R}) - V(\sqrt{(N : M)}). \]

(6). This follows from (5). \qed

Lemma 3.3. For any ring \(R \), \(q.\text{Spec}(\overline{R}) \) is connected if and only if \(\text{Spec}(\overline{R}) \) is connected.

Proof. Suppose that \(q.\text{Spec}(\overline{R}) \) is a connected space. By Proposition 3.1, the map \(\phi^R \) is surjective and continuous and so \(\text{Spec}(\overline{R}) \) is also a connected space. Conversely, suppose on the contrary that \(q.\text{Spec}(\overline{R}) \) is disconnected. Then there exists a non-empty proper subset \(W \) of \(q.\text{Spec}(\overline{R}) \) that is both open and closed. By Proposition 3.1, \(\phi^R(W) \) is a non-empty subset of \(\text{Spec}(\overline{R}) \) that is both open and closed. To complete the proof, it suffices to show that \(\phi^R(W) \) is a proper subset of \(\text{Spec}(\overline{R}) \) that in this case \(\text{Spec}(\overline{R}) \) is disconnected, a contradiction.

Since \(W \) is open, \(W = q.\text{Spec}(\overline{R}) - \nu(T) \) for some ideal \(I \) of \(R \) containing \(\text{Ann}(M) \).

Thus \(\phi^R(W) = \text{Spec}(\overline{R}) - V(T) \) by Proposition 3.1. Therefore, if \(\phi^R(W) = \text{Spec}(\overline{R}) \), then \(V(T) = \emptyset \), and so \(T = \overline{R} \), i.e., \(I = R \). It follows that \(W = q.\text{Spec}(\overline{R}) - \nu(\overline{R}) = q.\text{Spec}(\overline{R}) \) which is impossible. Thus \(\phi^R(W) \) is a proper subset of \(q.\text{Spec}(\overline{R}) \). \qed

Theorem 3.1. Let \(M \) be a quasi-primaryful \(R \)-module. Then the following statements are equivalent:

(1) \(q.\text{Spec}(M) \) together with quasi-Zariski topology is a connected space;

(2) \(q.\text{Spec}(\overline{R}) \) together with quasi-Zariski topology is a connected space;

(3) \(\text{Spec}(\overline{R}) \) together with Zariski topology is a connected space;
(4) Spec(M) together with Zariski topology is a connected space;
(5) The ring \overline{R} contains no idempotent other than $\overline{0}$ and $\overline{1}$.

Consequently, if R is a quasi-local ring or $\text{Ann}(M)$ is a prime ideal of R, then both $\text{q.Spec}(M)$ and $\text{q.Spec}(\overline{R})$ are connected.

Proof. (1) \Rightarrow (3) follows since $\varphi = \phi^R o \psi^q$ is a surjective and continuous map of the connected space $\text{q.Spec}(M)$. To prove (3) \Rightarrow (1), we assume that $\text{q.Spec}(\overline{R})$ is connected. If $\text{q.Spec}(M)$ is disconnected, then $\text{q.Spec}(M)$ must contain a non-empty proper subset Y that is both open and closed. Accordingly, $\varphi(Y)$ is a non-empty subset of $\text{Spec}(\overline{R})$ that is both open and closed by Proposition 3.1. To complete the proof, it suffices to show that $\varphi(Y)$ is a proper subset of $\text{Spec}(\overline{R})$ so that $\text{Spec}(\overline{R})$ is disconnected, a contradiction.

Since Y is open, $Y = \text{q.Spec}(M) - \nu(N)$ for some submodule N of M whence $\varphi(Y) = \text{Spec}(\overline{R}) - V(\sqrt{(N : M)})$ by Proposition 3.1. Therefore, if $\varphi(Y) = \text{Spec}(\overline{R})$, then $V(\sqrt{(N : M)}) = \emptyset$, and so $\sqrt{(N : M)} = \overline{R}$, i.e., $N = M$. It follows that $Y = \text{q.Spec}(M) - \nu(M) = \text{q.Spec}(M)$ which is impossible. Thus $\varphi(Y)$ is a proper subset of $\text{Spec}(\overline{R})$.

By Lemma 3.3, (2) and (3) are equivalent and (3) \Leftrightarrow (4) \Leftrightarrow (5) may be obtained by using [5, Theorem 3.1.] and [13, Corollary 3.8].

A topological space $(X; \tau)$ is said to be a T_0-space if for each pair of distinct points a, b in X, either there exists an open set containing a and not b, or there exists an open set containing b and not a. It has been shown that a topological space is T_0 if and only if the closures of distinct points are distinct. Also, a topological space $(X; \tau)$ is called a T_1-space if every singleton set $\{x\}$ is closed in $(X; \tau)$. Clearly every T_1-space is a T_0-space.

Proposition 3.2. Let M be an R-module, $Y \subseteq \text{q.Spec}(M)$ and let $Q \in \text{q.Spec}_p(M)$. Then
(1) \(\nu(\xi(Y)) = cl(Y) \). In particular, \(cl(\{Q\}) = \nu(Q) \).

(2) If \((0) \in Y\), then \(Y \) is dense in \(q.\text{Spec}(M) \).

(3) The set \(\{Q\} \) is closed in \(q.\text{Spec}(M) \) if and only if

 (i) \(p \) is a maximal element in \(\sqrt{(N : M)} \mid N \in q.\text{Spec}(M) \), and

 (ii) \(q.\text{Spec}_p(M) = \{Q\} \).

(4) If \(\{Q\} \) is closed in \(q.\text{Spec}(M) \), then \(Q \) is a maximal element of \(q.\text{Spec}(M) \).

(5) \(q.\text{Spec}(M) \) is a \(T_0 \)-space if and only if any of the equivalent statements (1)-(4) in Theorem 2.1 hold.

(6) \(q.\text{Spec}(M) \) is a \(T_1 \)-space if and only if \(q.\text{Spec}(M) \) is a \(T_0 \)-space and for every element \(Q \in q.\text{Spec}(M) \), \(\sqrt{(Q : M)} \) is a maximal element in \(\{\sqrt{(N : M)} \mid N \in q.\text{Spec}(M)\} \).

(7) \(q.\text{Spec}(M) \) is a \(T_1 \)-space if and only if \(q.\text{Spec}(M) \) is a \(T_0 \)-space and every quasi-primary submodule of \(M \) satisfying the primeful property is a maximal element of \(q.\text{Spec}(M) \).

(8) Let \((0) \in q.\text{Spec}(M) \). Then \(q.\text{Spec}(M) \) is a \(T_1 \)-space if and only if \((0) \) is the only quasi-primary submodule of \(M \) satisfying the primeful property.

Proof. (1). Suppose \(L \in Y \). Then \(\xi(Y) \subseteq L \). Therefore \(\sqrt{(L : M)} \supseteq \sqrt{(\xi(Y) : M)} \). Thus \(L \in \nu(\xi(Y)) \) and so \(Y \subseteq \nu(\xi(Y)) \). Next, let \(\nu(N) \) be any closed subset of \(q.\text{Spec}(M) \) containing \(Y \). Then \(\sqrt{(L : M)} \supseteq \sqrt{(N : M)} \) for every \(L \in Y \) so that \(\sqrt{(\xi(Y) : M)} \supseteq \sqrt{(N : M)} \). Hence, for every \(L' \in \nu(\xi(Y)) \); \(\sqrt{(L' : M)} \supseteq \sqrt{(\xi(Y) : M)} \supseteq \sqrt{(N : M)} \). Then \(\nu(\xi(Y)) \subseteq \nu(N) \). Thus \(\nu(\xi(Y)) \) is the smallest closed subset of \(q.\text{Spec}(M) \) containing \(Y \), hence \(\nu(\xi(Y)) = cl(Y) \).

(2) is trivial by (1).

(3). Suppose that \(\{Q\} \) is closed. Then \(\{Q\} = \nu(Q) \) by (1). Let \(N \in q.\text{Spec}(M) \) such that \(\sqrt{(N : M)} \supseteq p = \sqrt{(Q : M)} \). Hence, \(N \in \nu(Q) = \{Q\} \), and so \(q.\text{Spec}_p(M) = \{Q\} \). Conversely, assume that (i) and (ii) hold. Let \(N \in cl(\{Q\}) \). Hence by (1),
\[\sqrt{(N : M)} \supseteq \sqrt{(Q : M)}. \] Thus by (i), \[\sqrt{(N : M)} = \sqrt{(Q : M)} = p \] and therefore \[Q = N \] by (ii). This yields \[\text{cl}(\{Q\}) = \{Q\}. \]

(4). Suppose \(Q' \in q.\text{Spec}(M) \) such that \(Q' \supseteq Q \). Then \[\sqrt{(Q' : M)} \supseteq \sqrt{(Q : M)}. \]
i.e., \(Q' \in \nu(Q) = \text{cl}(\{Q\}) = \{Q\} \). Hence, \(Q' = Q \), and so \(Q \) is a maximal element of \(q.\text{Spec}(M) \).

(5). The result follows from the part (1).

(6). The result is easy to check from the parts (3), (5).

(7). The sufficiency is trivial by part (4). Conversely, suppose \(Q, N \in q.\text{Spec}(M) \) such that \(Q \in \text{cl}(\{N\}) = \nu(N) \). Thus \[\sqrt{(Q : M)} \supseteq \sqrt{(N : M)}. \]
Since \(Q \) satisfies the primeful property, \(\sqrt{(Q : M)} \) is a proper ideal of \(R \) and hence by maximality of \(N \) we have \[\sqrt{(Q : M)} = \sqrt{(N : M)} \]; i.e. \(\nu(Q) = \nu(N) \). Now, by Theorem 2.1, we conclude that \(Q = N \). Thus \(\text{cl}(\{N\}) = \{N\} \); i.e. every singleton subset of \(q.\text{Spec}(M) \) is closed. So, \(q.\text{Spec}(M) \) is a \(T_1 \)-space.

(8). Use part (7). \(\Box \)

Example 3.1. Consider the \(\mathbb{Z} \)-module \(M = \prod_p \mathbb{Z}/p\mathbb{Z} \) where \(p \) runs through the set \(\Omega \) of all prime integers of \(\mathbb{Z} \). We claim that \(q.\text{Spec}(M) = \{pM \mid p \in \Omega\} \). Let \(p \in \Omega \). By [11, Example 1(3) p. 136], \(pM \) is a \(p \)-prime submodule of \(M \) and hence by [11, Proposition 4.5] \(pM \) satisfies the primeful property. Thus \(\{pM \mid p \in \Omega\} \subseteq q.\text{Spec}(M) \). For the reverse inclusion, let \(Q \in q.\text{Spec}(M) \). By the argument in the Example [5, Example 3.1], \(\sqrt{(Q : M)} \) is a nonzero prime ideal of \(\mathbb{Z} \). Take \(\sqrt{(Q : M)} = p\mathbb{Z} \). So \(p\mathbb{Z} = \sqrt{(Q : M)} = (\text{rad}Q : M) \) implies that \(\text{rad}Q \) is a prime submodule of \(M \). Thus \(\text{rad}Q = pM \). Since the ring of integers is Noetherian, there is \(n \in \mathbb{N} \) such that \(p^n = (\sqrt{(Q : M)})^n \subseteq (Q : M) \). Hence \(p^nM \subseteq Q \subseteq pM \). It is easy to see that \(p^nM = pM \) and so \(Q = pM \). Now by Proposition 3.2(3), \(q.\text{Spec}(M) \) is a \(T_1 \)-space.

Theorem 3.2. Let \(M \) be a finitely generated \(R \)-module. The following statements are equivalent:
(1) \(q\text{-Spec}(M) \) is a \(T_1 \)-space;

(2) \(q\text{-Spec}(M) \) is a \(T_0 \)-space and \(q\text{-Spec}(M) = \text{Max}(M) \);

(3) \(M \) is a multiplication module and \(q\text{-Spec}(M) = \text{Max}(M) \).

Proof. (1) \(\Rightarrow \) (2). Since \(M \) is finitely generated, every submodule of \(M \) satisfies the primeful property by [11, Theorem 2.2]. Thus \(\text{Max}(M) \subseteq q\text{-Spec}(M) \). The reverse inclusion is obtained by using Proposition 3.2(7) and the fact that every proper submodule, in particular every quasi-primary submodule, of a finitely generated module is contained in a maximal submodule.

(2) \(\Rightarrow \) (1) is clear by Proposition 3.2(7).

(2) \(\Rightarrow \) (3). By [11, Theorem 2.2], we may assume that \(\text{Spec}(M) \) is a subspace of \(q\text{-Spec}(M) \) and hence \(|\text{Spec}_p(M)| \leq 1 \) for every prime ideal \(p \) of \(R \), by Proposition 3.2(5). Now, it follows from [15, Theorem 3.5] that \(M \) is multiplication.

(3) \(\Rightarrow \) (2). Suppose \(M \) is a multiplication module and \(q\text{-Spec}(M) = \text{Max}(M) \). Thus every quasi-primary submodule of \(M \) is of the form \(pM \) for some maximal ideal \(p \) of \(R \), by [4, Theorem 2.5(ii)]. Now, let \(\nu(pM) = \nu(p'M) \) for some \(pM, p'M \in q\text{-Spec}(M) \). Hence \(\sqrt{(pM : M)} = \sqrt{(p'M : M)} \). It implies that \((\text{rad}(pM) : M) = (\text{rad}(p'M) : M) \) and so \(\text{rad}(pM) = \text{rad}(p'M) \). Since \(pM \) and \(p'M \) are prime, we have \(pM = p'M \). Thus \(q\text{-Spec}(M) \) is a \(T_0 \)-space by Proposition 3.2(5).

□

Corollary 3.1. Let \(M \) be an \(R \)-module.

1. Let \(R \) be a domain. If \(q\text{-Spec}(R) \) is a \(T_1 \)-space, then \(R \) is a field.

2. If \(M \) is Noetherian and \(q\text{-Spec}(M) \) is a \(T_1 \)-space, then \(M \) is Artinian cyclic.

Proof. (1). Since \(R \) is a domain, \((0) \in q\text{-Spec}(R) \). But by Theorem 3.2, we have \(q\text{-Spec}(R) = \text{Max}(R) \). Thus, \(R \) is a field.

(2). By Theorem 3.2, \(M \) is multiplication and every quasi-primary submodule and hence every prime submodule of \(M \) is maximal. By [2, Theorem 4.9], \(M \) is Artinian and the result follows from [4, Corollary 2.9].

□
A topological space X is called irreducible if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect. A subset A of a topological space X is irreducible if for every pair of closed subsets A_i ($i = 1, 2$) of X with $A \subseteq A_1 \cup A_2$, we have $A \subseteq A_1$ or $A \subseteq A_2$. An irreducible component of a topological space A is a maximal irreducible subset of X. A singleton subset and its closure in $\text{q.Spec}(M)$ are both irreducible.

Now, we can apply Proposition 3.2(1) to achieve the following result:

Lemma 3.4. $\nu(Q)$ is an irreducible closed subset of $\text{q.Spec}(M)$ for every quasi-primary submodule Q of M satisfying the primeful property.

As we mentioned before, it is easily seen that if Q is a quasi-primary submodule of M satisfying the primeful property, then $(Q : M)$ is a quasi-primary ideal of R. The converse is also true when M is a multiplication module. Indeed if $(Q : M)$ is a quasi-primary ideal of R, then $p = \sqrt{(Q : M)} = (\text{rad}Q : M)$ is a prime ideal of R. Thus by [4, Corollary 2.11], $\text{rad}Q$ is a prime submodule and so Q is a quasi-primary submodule of M. Using this fact, some assertions will be proved in the following.

Theorem 3.3. Let M be an R-module and $Y \subseteq \text{q.Spec}(M)$. If $\xi(Y)$ is a quasi-primary submodule of M, then Y is an irreducible space. The converse is true, if M is a multiplication module and $\xi(Y)$ satisfies the primeful property.

Proof. Suppose $\xi(Y)$ is a quasi-primary submodule of M. Let $Y \subseteq Y_1 \cup Y_2$ where Y_1 and Y_2 are two closed subsets of $\text{q.Spec}(M)$. Then there exist two submodules N and K of M such that $Y_1 = \nu(N)$ and $Y_2 = \nu(K)$. Thus, $Y \subseteq \nu(N) \cup \nu(K) = \nu(N \cap K)$ and so by Lemma 3.2(6), $\sqrt{(N \cap K : M)} \subseteq \sqrt{(\xi(Y) : M)}$. Since $\sqrt{(\xi(Y) : M)}$ is a prime ideal, either $\sqrt{(N : M)} \subseteq \sqrt{(\xi(Y) : M)}$ or $\sqrt{(K : M)} \subseteq \sqrt{(\xi(Y) : M)}$. Again by using Lemma 3.2(6), either $Y \subseteq \nu(N) = Y_1$ or $Y \subseteq \nu(K) = Y_2$. Thus we conclude that Y is irreducible. Conversely, assume that M is a multiplication module and Y is an irreducible space. By the above argument, it suffices to show that $(\xi(Y) : M)$ is
a quasi-primary ideal of R. Let $ab \in (\xi(Y) : M)$ for some $a, b \in R$. Suppose, on the contrary, that $Ra \not\subseteq \sqrt{(\xi(Y) : M)}$ and $Rb \not\subseteq \sqrt{(\xi(Y) : M)}$. Then $\sqrt{(RaM : M)} \not\subseteq \sqrt{(\xi(Y) : M)}$ and $\sqrt{(RbM : M)} \not\subseteq \sqrt{(\xi(Y) : M)}$. By Lemma 3.2(6), $Y \not\subseteq \nu(RaM)$ and $Y \not\subseteq \nu(RbM)$. Let $Q \in Y$. Then $\sqrt{(Q : M)} \supseteq \sqrt{(\xi(Y) : M)} \supseteq Rab$. This means that either $RaM \subseteq \sqrt{(Q : M)}M$ or $RbM \subseteq \sqrt{(Q : M)}M$. So, by Lemma 3.2(1),(3), either $\nu(Q) \subseteq \nu(RaM)$ or $\nu(Q) \subseteq \nu(RbM)$. Therefore, $Y \subseteq \nu(RaM) \cup \nu(RbM)$ and hence $Y \subseteq \nu(RaM)$ or $Y \subseteq \nu(RbM)$ as Y is irreducible. It is a contradiction. \hfill \Box

Corollary 3.2. Let M be a multiplication R-module.

(1) If M is finitely generated and N is a submodule of M. Then $V(N)$ is irreducible if and only if $N \in q.Spec(M)$.

(2) Let R be a domain, M be a faithful module and $\xi(q.Spec(M))$ satisfies the primeful property. Then $q.Spec(M)$ is irreducible.

Proof. (1). It is clear that $\text{rad}(N) = \xi(V(N)) \neq M$. Since M is finitely generated, [11, Theorem 2.2] follows that every proper submodule of M satisfies the primeful property and hence we have $V(N) \subseteq q.Spec(M)$. Now by Theorem 3.3, $V(N)$ is an irreducible space if and only if $\text{rad} N \in q.Spec(M)$. On the other hand, by the argument before Theorem 3.3, $\text{rad} N \in q.Spec(M)$ if and only if $N \in q.Spec(M)$.

(2). Since (0) is a prime ideal of R, we have $\text{rad}(0) = \text{rad}(0M) = \sqrt{(0)M} = 0$ by [4, Theorem 2.12]. Now, $(\xi(q.Spec(M)) : M) \subseteq (\xi(Spec(M)) : M) = (\bigcap_{P \in Spec(M)} P : M) = (0 : M) = (0)$. Thus $\xi(q.Spec(M))$ is a quasi-primary submodule of M and hence the result follows from Theorem 3.3. \hfill \Box

Let Y be a closed subset of a topological space. An element $y \in Y$ is said to be a generic point of Y if $Y = cl(\{y\})$. Proposition 3.2(1) follows that every element Q of $q.Spec(M)$ is a generic point of the irreducible closed subset $\nu(Q)$ of $q.Spec(M)$. Note that a generic point of a closed subset Y of a topological space is unique if the topological space is a T_0-space.
Theorem 3.4. Let M be a quasi-primaryful R-module and $Y \subseteq \text{q.Spec}(M)$.

1. Y is an irreducible closed subset of $\text{q.Spec}(M)$ if and only if $Y = \nu(Q)$ for some $Q \in \text{q.Spec}(M)$. In particular every irreducible closed subset of $\text{q.Spec}(M)$ has a generic point.

2. The set of all irreducible components of $\text{q.Spec}(M)$ is of the form

$$T = \{\nu(\sqrt{q}M) \mid q \in V^q(\text{Ann}(M)) \text{ and } \sqrt{q} \text{ is a minimal element of } V(\text{Ann}(M)) \text{ with respect to inclusion}\}.$$

3. Let R be a Laskerian ring and M be a nonzero R-module. Then $\text{q.Spec}(M)$ has finitely many irreducible components.

Proof. By Lemma 3.4, $Y = \nu(Q)$ is an irreducible closed subset of $\text{q.Spec}(M)$ for some $Q \in \text{q.Spec}(M)$. Conversely, let Y be an irreducible space. Hence $\phi^R \circ \psi^q(Y) = Y'$ is an irreducible subset of $\text{Spec}(\overline{R})$ because $\phi^R \circ \psi^q$ is continuous by Proposition 3.1(4). It follows from [3, P. 129, Proposition 14] that $\xi(Y') = \sqrt{(\xi(Y) : M)}$ is a prime ideal of \overline{R}. Therefore $\sqrt{(\xi(Y) : M)}$ is a prime ideal of R. Since the map $\phi^R \circ \psi^q$ is surjective, there exists $Q \in \text{q.Spec}(M)$ such that $\sqrt{(Q : M)} = \sqrt{(\xi(Y) : M)}$. Since Y is closed, there exists a submodule N of M such that $Y = \nu(N)$. It means that $\sqrt{(\xi(\nu(N)) : M)} = \sqrt{(Q : M)}$ and hence $\nu(\xi(N)) = \nu(\xi(\nu(N))) = \nu(Q)$ by Lemma 3.2(6). Thus $Y = \nu(Q)$ by Proposition 3.2(1).

(2). Suppose Y is an irreducible component of $\text{q.Spec}(M)$. By part (1), $Y = \nu(Q)$ for some $Q \in \text{q.Spec}(M)$. Hence, $Y = \nu(Q) = \nu(\sqrt{(Q : M)}M)$ by Lemma 3.2(3). Let $q = (Q : M)$. Now, it suffices to show that \sqrt{q} is a minimal element of $V(\text{Ann}(M))$ with respect to inclusion. To see this let $q' \in V(\text{Ann}(M))$ and $q' \subseteq \sqrt{q}$. Then there exists an element $Q' \in \text{q.Spec}(M)$ such that $\sqrt{(Q' : M)} = q'$ because M is quasi-primaryful. So, $Y = \nu(Q) \subseteq \nu(Q')$. Hence, $Y = \nu(Q) = \nu(Q')$ due to the maximality of $\nu(Q)$. It implies that $\sqrt{q} = q'$. Conversely, let $Y \in T$. Then there exists $q \in V^q(\text{Ann}(M))$ such that \sqrt{q} is a minimal element in $V(\text{Ann}(M))$ and
$Y = \nu(\sqrt{q}M)$. Since M is quasi-primaryful, there exists an element $Q \in q\text{Spec}(M)$ such that $\sqrt{(Q : M)} = \sqrt{q}$. So, $Y = \nu(\sqrt{q}M) = \nu(\sqrt{(Q : M)}M) = \nu(Q)$, and so Y is irreducible by part (1). Suppose that $Y = \nu(Q) \subseteq \nu(Q')$, where $Q' \in q\text{Spec}(M)$. Since $Q \in \nu(Q')$ and \sqrt{q} is minimal, it follows that $\sqrt{(Q : M)} = \sqrt{(Q' : M)}$. Now, by Lemma 3.2(3), we have

$$Y = \nu(Q) = \nu(\sqrt{(Q : M)}M) = \nu(\sqrt{(Q' : M)}M) = \nu(Q').$$

(3). Suppose $q \in V^q(\text{Ann}(M))$ and \sqrt{q} is a minimal element of $V(\text{Ann}(M))$. Let $\text{Ann}(M) = \bigcap_{i=1}^{t} q_i$ be a minimal primary decomposition of $\text{Ann}(M)$. Then $\sqrt{q_i} \subseteq \sqrt{q}$ for some $1 \leq i \leq t$, since \sqrt{q} is prime. By minimality of \sqrt{q}, we get $\sqrt{q} = \sqrt{q_i}$. Therefore, irreducible components of $q\text{Spec}(M)$ are of the form $\nu(\sqrt{q_i}M)$, by part (2).

For any submodule N of M, we define $\Lambda_M(N) = q\text{Spec}(M) - \nu(N)$ as an open set of $q\text{Spec}(M)$. Also, $\Lambda_M(a) = \Lambda_M(aM)$ for any $a \in R$. Clearly, $\Lambda_M(0) = \emptyset$ and $\Lambda_M(1) = q\text{Spec}(M)$. The following result shows that the set $B = \{\Lambda_M(a) \mid a \in R\}$ is a base for the quasi-Zariski topology on $q\text{Spec}(M)$.

Theorem 3.5. Let M be an R-module. The set $B = \{\Lambda_M(a) \mid a \in R\}$ forms a base for the quasi-Zariski topology on $q\text{Spec}(M)$.

Proof. We may assume that $q\text{Spec}(M) \neq \emptyset$. We will show that every open subset of $q\text{Spec}(M)$ is a union of members of B. Let O be an open subset in $q\text{Spec}(M)$.

Thus \(O = q.\text{Spec}(M) - \nu(N) \) for some submodule \(N \) of \(M \). Therefore

\[
O = q.\text{Spec}(M) - \nu(N) = q.\text{Spec}(M) - \nu(\sqrt{(N : M)M})
\]

\[
= q.\text{Spec}(M) - \nu(\sum_{a \in \sqrt{(N : M)}} aM)
\]

\[
= q.\text{Spec}(M) - \nu(\sum_{a \in \sqrt{(N : M)}} (aM : M)M)
\]

\[
= q.\text{Spec}(M) - \bigcap_{a \in \sqrt{(N : M)}} \nu(aM)
\]

\[
= \bigcup_{a \in \sqrt{(N : M)}} \Lambda_M(a)
\]

\[\square\]

Theorem 3.6. Let \(R \) be a ring and \(a, b \in R \).

1. \(\Lambda_R(a) = \emptyset \) if and only if \(a \) is a nilpotent element of \(R \).
2. \(\Lambda_R(a) = q.\text{Spec}(R) \) if and only if \(a \) is a unit element of \(R \).
3. For each pair of ideals \(I \) and \(J \) of \(R \), \(\Lambda_R(I) = \Lambda_R(J) \) if and only if \(\sqrt{I} = \sqrt{J} \).
4. \(\Lambda_R(ab) = \Lambda_R(a) \cap \Lambda_R(b) \).
5. \(q.\text{Spec}(R) \) is quasi-compact.
6. \(q.\text{Spec}(R) \) is a \(T_0 \)-space.

Proof. (1). Let \(a \in R \). Then

\[
\emptyset = \Lambda_R(a) = q.\text{Spec}(R) - V^q(Ra)
\]

\[
\Leftrightarrow V^q(Ra) = q.\text{Spec}(R)
\]

\[
\Leftrightarrow \sqrt{q} \supseteq Ra \text{ for every } q \in q.\text{Spec}(R)
\]

\[
\Leftrightarrow a \text{ is in every prime ideal of } R
\]

\[
\Leftrightarrow a \text{ is a nilpotent element of } R.
\]
(2). Let \(a \in R \). Then
\[
\Lambda_R(a) = \text{q.Spec}(R) \iff a \notin \sqrt{q} \text{ for all } q \in \text{q.Spec}(R)
\]
\[
\implies a \notin q \text{ for all } q \in \text{Max}(R)
\]
\[
\implies a \text{ is unit.}
\]
Conversely, if \(a \) is a unit, then clearly \(a \) is not in any quasi-primary ideal. That is, \(\Lambda_R(a) = \text{q.Spec}(R) \).

(3) Suppose that \(\Lambda_R(I) = \Lambda_R(J) \). Let \(p \) be a prime ideal of \(R \) containing \(I \). Since \(p \) is a quasi-primary ideal of \(R \) and \(p \supseteq \sqrt{I} \), we have \(p \in \nu(I) \). Thus, by assumption, \(p \supseteq \sqrt{J} \supseteq J \) and so every prime ideal of \(R \) containing \(I \) is also a prime ideal of \(R \) containing \(J \), and vice versa. Therefore \(\sqrt{I} = \sqrt{J} \). The converse is trivially true.

(4). To prove (4), it suffices to show that \(\nu(Rab) = \nu(Ra) \cup \nu(Rb) \). Let \(q \in \nu(Rab) \).
Then
\[
\sqrt{q} \supseteq \sqrt{Rab} = \sqrt{Ra} \cap \sqrt{Rb} \iff (\sqrt{q} \supseteq \sqrt{Ra} \text{ or } \sqrt{q} \supseteq \sqrt{Rb})
\]
\[
\iff (q \in \nu(Ra) \text{ or } q \in \nu(Rb))
\]
\[
\iff q \in \nu(Ra) \cup \nu(Rb).
\]

(5). Let \(\text{q.Spec}(R) = \bigcup_{i \in I} \Lambda_R(J_i) \), where \(\{J_i\}_{i \in I} \) is a family of ideals of \(R \). We clearly have \(\Lambda_R(R) = \text{q.Spec}(R) = \Lambda_R(\sum_{i \in I} J_i) \). Thus, by part (3), we have \(R = \sqrt{\sum_{i \in I} J_i} \)
and hence, \(1 \in \sum_{i \in I} J_i \). So there are \(i_1, i_2, \cdots, i_n \in I \) such that \(1 \in \sum_{k=1}^n J_{i_k} \), that is \(R = \sum_{k=1}^n J_{i_k} \). Consequently \(\text{q.Spec}(R) = \Lambda_R(R) = \Lambda_R(\sum_{k=1}^n J_{i_k}) = \bigcup_{k=1}^n \Lambda_R(J_{i_k}) \).

(6). Let \(q_1, q_2 \) be two distinct points of \(\text{q.Spec}(R) \). If \(q_1 \notin q_2 \), then obviously \(q_2 \in \Lambda_R(q_1) \) and \(q_1 \notin \Lambda_R(q_1) \). \(\square \)

Proposition 3.3. Let \(M \) be an \(R \)-module and \(a, b \in R \).

(1) \((\psi^q)^{-1}(\Lambda_R(\overline{a})) = \Lambda_M(a) \).
(2) $\psi^q(\Lambda_M(a)) \subseteq \Lambda_R(\overline{a})$ and the equality holds if ψ^q is surjective.

(3) $\Lambda_M(ab) = \Lambda_M(a) \cap \Lambda_M(b)$.

(4) If ψ^q is surjective, then the open set $\Lambda_M(Ra)$ in $q.\text{Spec}(M)$ is quasi-compact.

In particular, the space $q.\text{Spec}(M)$ is quasi-compact.

Proof. (1). Since ψ^q is continuous, by Proposition 3.1(3), we have

$$
(\psi^q)^{-1}(\Lambda_R(\overline{a})) = (\psi^q)^{-1}(q.\text{Spec}(R) - \nu(\overline{a}R)) = q.\text{Spec}(M) - (\psi^q)^{-1}(\nu(\overline{a}R)) = q.\text{Spec}(M) - \nu(aM) = \Lambda_M(a).
$$

(2) follows immediately from part (1).

(3). Let $a, b \in R$. Then

$$
\Lambda_M(ab) = (\psi^q)^{-1}(\Lambda_R(\overline{ab})) \text{ by part (1)}
= (\psi^q)^{-1}(\Lambda_R(\overline{a}) \cap \Lambda_R(\overline{b})) \text{ by Theorem 3.6(4)}
= (\psi^q)^{-1}(\Lambda_R(\overline{a})) \cap (\psi^q)^{-1}(\Lambda_R(\overline{b}))
= \Lambda_M(a) \cap \Lambda_M(b).
$$

(4). Since $B = \{\Lambda_M(a) \mid a \in R\}$ forms a base for the quasi-Zariski topology on $q.\text{Spec}(M)$ by Theorem 3.5, for any open cover of $\Lambda_M(a)$, there is a family $\{a_i \in R \mid i \in I\}$ of elements of R such that $\Lambda_M(a) \subseteq \bigcup_{i \in I} \Lambda_M(a_i)$. By part (2), $\Lambda_R(\overline{a}) = \psi^q(\Lambda_M(a)) \subseteq \bigcup_{i \in I} \psi^q(\Lambda_M(a_i)) = \bigcup_{i \in I} \Lambda_R(\overline{a_i})$. It follows that there exists a finite subset I' of I such that $\Lambda_R(\overline{a}) \subseteq \bigcup_{i \in I'} \Lambda_R(\overline{a_i})$ as $\Lambda_R(\overline{a})$ is quasi-compact, since ϕ^R is surjective, whence $\Lambda_M(a) = (\psi^q)^{-1}(\Lambda_R(\overline{a})) \subseteq \bigcup_{i \in I'} \Lambda_M(a_i)$ by part (1). \qed
Theorem 3.7. Let M be an R-module. If the map ψ^a is surjective, then the quasi-compact open sets of $q.\text{Spec}(M)$ are closed under finite intersection and form an open base.

Proof. It suffices to show that the intersection $C = C_1 \cap C_2$ of two quasi-compact open sets C_1 and C_2 of $q.\text{Spec}(M)$ is a quasi-compact set. Each C_j, $j = 1$ or 2, is a finite union of members of the open base $B = \{\Lambda_M(a) \mid a \in R\}$, hence so is C due to Proposition 3.3. Put $C = \bigcup_{i=1}^{n} \Lambda_M(a_i)$ and let Ω be any open cover of C. Then Ω also covers each $\Lambda_M(a_i)$ which is quasi-compact by Proposition 3.3 (4). Hence, each $\Lambda_M(a_i)$ has a finite subcover of Ω and so does C. The other part of the theorem is trivially true due to the existence of the open base B. □

Following [10], we say that a topological space W is a spectral space in case W is homeomorphic to $\text{Spec}(S)$, with the Zariski topology, for some ring S. Spectral spaces have been characterized by Hochster [10, p.52, Proposition 4] as the topological spaces W which satisfy the following conditions:

1. W is a T_0-space;
2. W is quasi-compact;
3. The quasi-compact open subsets of W are closed under finite intersection and form an open base;
4. Each irreducible closed subset of W has a generic point.

In the end of this paper, we observe $q.\text{Spec}(M)$ from the point of view of spectral topological spaces; we will follow the above mentioned Hochster’s characterization closely.

The next theorem is obtained by combining Proposition 3.3 (4), Theorem 3.7, and Theorem 3.4 (1).
Theorem 3.8. Let M be an R-module and the map ψ^q be surjective. Then $q.\text{Spec}(M)$ fulfills the above conditions (2), (3), and (4), namely, $q.\text{Spec}(M)$ satisfies all the conditions to be a spectral space but possibly condition (1).

Theorem 3.9. Let M be an R-module and the map ψ^q be surjective. Then the following statements are equivalent:

1. $q.\text{Spec}(M)$ is a spectral space;
2. $q.\text{Spec}(M)$ is a T_0-space;
3. $\phi^R\psi^q$ is injective;
4. If $\nu(N) = \nu(K)$, then $N = K$, for any $N, K \in q.\text{Spec}(M)$;
5. $|q.\text{Spec}_p(M)| \leq 1$ for every $q \in V^q(\text{Ann}(M))$ with $\sqrt{q} = p$;
6. ϕ^M is injective.

Proof. (1) \Rightarrow (2) is trivial and (2) \Rightarrow (1) holds by Theorem 3.8. The equivalence of (2) – (6) is due to Proposition 3.2 (5).

Acknowledgement

The authors wish to thank the referee for a careful reading of this article and many useful comments.

References

(1) DEPARTMENT OF MATHEMATICS, VELAYAT UNIVERSITY, IRANSHahr, IRAN (CORRESPONDING AUTHOR)

E-mail address: m.samiei@velayat.ac.ir

(2) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BIRJAND, BIRJAND, IRAN

E-mail address: hfazaei@birjand.ac.ir