GENERALIZED CLOSED SETS IN IDEAL M-SPACES

AHMAD AL-OMARI (1) AND TAKASHI NOIRI (2)

ABSTRACT. Dontchev et al. [2] introduced and investigated the notion of I-g-closed sets in ideal topological spaces as a modification of g-closed sets due to Levine [5]. The concept of ideal m-spaces was introduced by Al-Omari and Noiri [1]. In this paper, we introduce and study the concept of generalized closed (Ig^*-closed) sets in an ideal m-space.

1. Introduction

The notion of ideal topological spaces was first studied by Kuratowski [4]. Jankovic and Hamlett [3] obtained the further properties of ideal topological spaces. In 1970, Levine [5] initiated the investigations of generalized closed (g-closed) sets in topological spaces. As a modification of g-closed sets, Dontchev et al. [2] introduced the notion of I-g-closed sets in an ideal topological space (X, τ, I), where τ is a topology and I is an ideal.

Popa and Noiri [7] called a subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X a minimal structure, if $\emptyset, X \in m$. Recently, Ozbakir and Yildirim [6] have defined the minimal local function A^*_m in an ideal minimal space (X, m, I). As an analogous

2000 Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases. ideal, generalized closed sets, ideal m-space.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Aug. 19, 2010 Accepted: Oct. 27, 2011.
notion to \(\mathcal{I}_{g}\)-closed sets in \((X, \tau, \mathcal{I})\), they defined and studied \(m\mathcal{I}_{g}\)-closed sets in \((X, m, \mathcal{I})\).

Quite recently, the present authors called a subcollection \(\mathcal{M} \) of \(\mathcal{P}(X) \) a minimal structure on \(X \) if (1) \(\emptyset, X \in \mathcal{M} \) and (2) \(\mathcal{M} \) is closed under finite intersections. They defined the local function \(A_\ast \) in an ideal minimal space \((X, \mathcal{M}, \mathcal{I})\). Then \(\text{Cl}_{\ast}(A) = A \cup A_\ast \) is a Kuratowski closure operator which generates a new topology \(\mathcal{M}_{\ast} \) containing the minimal structure \(\mathcal{M} \). In this paper, by using the local function \(A_\ast \) we introduce and investigate the notion of \(\mathcal{I}_{g}\)-closed sets in \((X, \mathcal{M}, \mathcal{I})\). In the last section, we introduce the notion of \(T_\ast \)-spaces and investigate the relationship between \(T_\ast \)-spaces and \(T_{1\frac{1}{2}} \)-spaces.

2. Preliminaries

Let \((X, \tau)\) be a topological space with no separation properties assumed. For a subset \(A \) of a topological space \((X, \tau)\), \(\text{Cl}(A) \) and \(\text{Int}(A) \) denote the closure and the interior of \(A \) in \((X, \tau)\), respectively. An ideal \(\mathcal{I} \) on a topological space \((X, \tau)\) is a non-empty collection of subsets of \(X \) which satisfies the following properties:

1. \(A \in \mathcal{I} \) and \(B \subseteq A \) implies that \(B \in \mathcal{I} \).
2. \(A \in \mathcal{I} \) and \(B \in \mathcal{I} \) implies \(A \cup B \in \mathcal{I} \).

An ideal topological space is a topological space \((X, \tau)\) with an ideal \(\mathcal{I} \) on \(X \) and is denoted by \((X, \tau, \mathcal{I})\). For a subset \(A \subseteq X \), \(A_\ast(\mathcal{I}, \tau) = \{ x \in X : A \cap U \notin \mathcal{I} \) for every open set \(U \) containing \(x \} \) is called the local function of \(A \) with respect to \(\mathcal{I} \) and \(\tau \) (see [3, 4]) and is simply denoted by \(A_\ast \) instead of \(A_\ast(\mathcal{I}, \tau) \).

Definition 2.1. [1] A subfamily \(\mathcal{M} \) of the power set \(\mathcal{P}(X) \) of a nonempty set \(X \) is called an \(m \)-structure on \(X \) if \(\mathcal{M} \) satisfies the following conditions:

1. \(\mathcal{M} \) contains \(\emptyset \) and \(X \),
(2) \mathcal{M} is closed under the finite intersection.

The pair (X, \mathcal{M}) is called an m-space. An m-space (X, \mathcal{M}) with an ideal \mathcal{I} on X is called an ideal m-space and is denoted by $(X, \mathcal{M}, \mathcal{I})$.

A. Al-Omari and T. Noiri [1] introduced the following definitions and results

Definition 2.2. A set $A \in \mathcal{P}(X)$ is called an m-open set if $A \in \mathcal{M}$.

$B \in \mathcal{P}(X)$ is called an m-closed set if $X - B \in \mathcal{M}$. We set $m\text{Int}(A) = \bigcup\{U : U \subseteq A, U \in \mathcal{M}\}$ and $m\text{Cl}(A) = \bigcap\{F : A \subseteq F, X - F \in \mathcal{M}\}$.

Definition 2.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For a subset A of X, we define the following set: $A^*(\mathcal{I}, \mathcal{M}) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \mathcal{M}(x)\}$, where $\mathcal{M}(x) = \{U \in \mathcal{M} : x \in U\}$. In this case there is no confusion $A^*(\mathcal{I}, \mathcal{M})$ is briefly denoted by A_* and is called the \mathcal{M}-local function of A with respect to \mathcal{I} and \mathcal{M}.

Lemma 2.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B any subsets of X. Then the following properties hold:

1. $(\emptyset)_* = \emptyset$,
2. $(A_*)_* \subset A_*$,
3. $A_* \cup B_* = (A \cup B)_*$.

Definition 2.4. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For any subset A of X, we put $\text{Cl}_*(A) = A \cup A_*$. Then the operator Cl_* is a Kuratowski closure operator. The topology generated by Cl_* is denoted by \mathcal{M}_*, that is $\mathcal{M}_* = \{U \subseteq X : \text{Cl}_*(X - U) = X - U\}$. The closure and the interior of A with respect to \mathcal{M}_* are denoted by $\text{Cl}_*(A)$ and $\text{Int}_*(A)$, respectively.

Theorem 2.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then \mathcal{M}_* is a topology containing the minimal structure \mathcal{M}.
Lemma 2.2. Let \((X, M)\) be an \(m\)-space, \(I\) and \(J\) be ideals on \(X\), and let \(A, B\) be subsets of \(X\). Then the following properties hold:

1. If \(A \subseteq B\), then \(A_* \subseteq B_*\).
2. If \(I \subseteq J\), then \(A_* (I) \supseteq A_* (J)\).
3. \(A_* = mCl(A) \subseteq mCl(A)\)
4. If \(A \subseteq A_*\), then \(A_* = mCl(A) = mCl(A)\).
5. If \(A \in I\), then \(A_* = \emptyset\).

3. \(I_{g^*}\)-closed sets

In this section 3 we investigate the class of generalized \(m\)-closed sets in an ideal \(m\)-space.

Definition 3.1. A subset \(A\) of an ideal \(m\)-space \((X, M, I)\) is said to be \(I_{g^*}\)-closed (resp. \(mg\)-closed) if \(A_* \subseteq U\) (resp. \(mCl(A) \subseteq U\)) whenever \(A \subseteq U\) and \(U \in M\). The complement of an \(I_{g^*}\)-closed (resp. \(mg\)-closed) set is said to be \(I_{g^*}\)-open (resp. \(mg\)-open).

Definition 3.2. [5] Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is called a \(g\)-closed set if \(Cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open.

Definition 3.3. [2] Let \((X, \tau, I)\) be an ideal topological space. A subset \(A\) of \(X\) is called an \(I\)-\(g\)-closed set if \(A_* \subseteq U\) whenever \(A \subseteq U\) and \(U \in \tau\). The complement of an \(I\)-\(g\)-closed set is said to be \(I\)-\(g\)-open.

Remark 1. Let \((X, \tau)\) be a topological space and \(I\) be an ideal on \(X\). If we take the \(m\)-structure \(M = \tau\), then \(I_{g^*}\)-closed (resp. \(mg\)-closed) sets coincide with \(I\)-\(g\)-closed (resp. \(g\)-closed) sets.
Proposition 3.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then the following properties are hold:

1. Every m-closed set is mg-closed.
2. Every mg-closed set is I_g^*-closed.

Proposition 3.2. The union of two I_g^*-closed sets in an ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is I_g^*-closed.

Proof. Let A, B be two I_g^*-closed sets, and $A \cup B \subseteq U$, where $U \in \mathcal{M}$. Since A and B are I_g^*-closed sets, then $A_\ast \subseteq U$ and $B_\ast \subseteq U$. Hence by Lemma 2.1, $A_\ast \cup B_\ast = (A \cup B)_\ast \subseteq U$ and hence $A \cup B$ is I_g^*-closed. □

Definition 3.4. A subset A of an ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is said to be M_\ast-closed (resp. M_\ast-dense in itself, M_\ast-perfect) if $A_\ast \subseteq A$ (resp. $A \subseteq A_\ast$, $A_\ast = A$).

Proposition 3.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. If A is I_g^*-closed and m-open, then A is M_\ast-closed.

Proposition 3.4. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then every subset of X is I_g^*-closed if and only if every m-open set is M_\ast-closed.

Proof. Suppose every subset of X is I_g^*-closed. If U is m-open, then it is I_g^*-closed and hence $U_\ast \subseteq U$. Hence U is M_\ast-closed. Conversely, suppose that every m-open set is M_\ast-closed. If A is any subset of X and U is an m-open set such that $A \subseteq U$, then $A_\ast \subseteq U_\ast \subseteq Cl_\ast(U) = U$ and hence A is I_g^*-closed. □
Theorem 3.1. Let \((X, \mathcal{M}, \mathcal{I})\) be an ideal m-space. For a subset \(A\) of \(X\), the following properties are hold:

1. \(A\) is \(\mathcal{I}_g\)-closed if and only if \(\text{Cl}_s(A) \subseteq U\) whenever \(A \subseteq U\) and \(U \in \mathcal{M}\).
2. If \(A\) is \(\mathcal{I}_g\)-closed, then the following equivalent properties hold:
 - (a) \(\text{Cl}_s(A) - A\) contains no a nonempty m-closed set.
 - (b) \(A_\ast - A\) contains no a nonempty m-closed set.

Proof. (1) Suppose that \(A\) is \(\mathcal{I}_g\)-closed. Then \(A_\ast \subseteq U\) whenever \(A \subseteq U\) and \(U \in \mathcal{M}\) and hence \(\text{Cl}_s(A) = A \cup A_\ast \subseteq U\) whenever \(A \subseteq U\) and \(U \in \mathcal{M}\). The converse is obvious.

(2) Suppose \(F \subseteq \text{Cl}_s(A) - A\) and \(F\) is m-closed. Since \(F \subseteq X - A\), \(A \subseteq X - F\) and \(X - F \in \mathcal{M}\). Since \(A\) is \(\mathcal{I}_g\)-closed, \(\text{Cl}_s(A) \subseteq X - F\) and \(F \subseteq X - \text{Cl}_s(A)\). Therefore, \(F \subseteq \text{Cl}_s(A) \cap (X - \text{Cl}_s(A)) = \emptyset\). Thus, (a) is proved.

(a) \(\Leftrightarrow\) (b): This follows from the fact that \(\text{Cl}_s(A) - A = A_\ast - A\). \(\Box\)

Corollary 3.1. For a subset of an ideal m-space \((X, \mathcal{M}, \mathcal{I})\), the following diagram holds:

\[
\begin{array}{ccc}
m\text{-closed} & \longrightarrow & \mathcal{M}_\ast\text{-closed} \\
\downarrow & & \downarrow \\
mg\text{-closed} & \longrightarrow & \mathcal{I}_g\ast\text{-closed}
\end{array}
\]

None of these implications in Corollary 3.1 is reversible as shown by the below examples.

Example 3.1. Let \(X = \{a, b, c\}\), \(\mathcal{M} = \{\emptyset, X, \{a\}, \{b\}, \{b, c\}\}\), and \(\mathcal{I} = \{\emptyset, \{a\}\}\). Then \(A = \{a, b\}\) is an mg-closed set but it is not \(\mathcal{M}_\ast\)-closed.

Example 3.2. Let \(X = \{a, b, c, d\}\), \(\mathcal{M} = \{\emptyset, X, \{a, c\}, \{d\}\}\), and \(\mathcal{I} = \{\emptyset, \{a\}\}\). Then \(A = \{a\}\) is an \(\mathcal{M}_\ast\)-closed set but it is not mg-closed.
Remark 2. (1) By Lemma 2.2, since $I_* = \emptyset$, for every $I \in \mathcal{I}$, I is \mathcal{I}_g^*-closed for every $I \in \mathcal{I}$.

(2) By Lemma 2.1, since $(A_*)_* \subseteq A_*$, it follows that A_* is always \mathcal{I}_g^*-closed for every subset A of X.

Corollary 3.2. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be an \mathcal{I}_g^*-closed set. Then the following properties are equivalent:

1. A is an \mathcal{M}_s-closed set;
2. $\text{Cl}_s(A) - A$ is an m-closed set;
3. $A_* - A$ is an m-closed set.

Proof. (1) \Rightarrow (2): If A is \mathcal{M}_s-closed, then $\text{Cl}_s(A) = A \cup A_* = A$ and hence $\text{Cl}_s(A) - A = \emptyset$ is m-closed.

(2) \Rightarrow (3): This follows from the fact that $\text{Cl}_s(A) - A = A_* - A$.

(3) \Rightarrow (1): Let $A_* - A$ be m-closed. Since A is \mathcal{I}_g^*-closed, by Theorem 3.1, $A_* - A = \emptyset$ and hence $A_* \subseteq A$. Therefore $\text{Cl}_s(A) = A \cup A_* = A$ and A is \mathcal{M}_s-closed.

Corollary 3.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. Then A is \mathcal{M}_s-closed if and only if $A_* - A$ is m-closed and A is \mathcal{I}_g^*-closed.

Proof. Let A be an \mathcal{M}_s-closed set. Then $\text{Cl}_s(A) = A_* \cup A = A$ and $A_* \subseteq A$. Since $A_* - A = \emptyset$, then $A_* - A$ is an m-closed set. By Corollary 3.1, every \mathcal{M}_s-closed set is \mathcal{I}_g^*-closed and hence A is \mathcal{I}_g^*-closed.

Conversely. Let $A_* - A$ be m-closed and A is \mathcal{I}_g^*-closed. Then by Corollary 3.2, A is \mathcal{M}_s-closed.

Theorem 3.2. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. If A is \mathcal{M}_s-dense in itself and \mathcal{I}_g^*-closed in X, then A is mg-closed.
Proof. Suppose A is an M_*-dense in itself and I^*_g-closed subset of X. If $U \in M$ and $A \subseteq U$, then by Theorem 3.1, $Cl_*(A) = A_* \cup A = A_* \subseteq U$. Since A is M_*-dense in itself, by Lemma 2.2 $mCl(A) = A_* \subseteq U$ and hence A is mg-closed. \hfill \square

Theorem 3.3. Let (X, M, I) be an ideal m-space and A, B be subsets of X. If $A \subseteq B \subseteq Cl_*(A)$ and A is I^*_g-closed, then B is I^*_g-closed.

Proof. Let $B \subseteq U$ and $U \in M$. Since $A \subseteq B \subseteq U$ and A is I^*_g-closed, then by Theorem 3.1, $Cl_*(A) \subseteq U$ and hence $Cl_*(B) \subseteq Cl_*(Cl_*(A)) = Cl_*(A) \subseteq U$. Therefore, by Theorem 3.1, B is I^*_g-closed. \hfill \square

Corollary 3.4. Let (X, M, I) be an ideal m-space and A, B be subsets of X. If $A \subseteq B \subseteq A_*$ and A is I^*_g-closed, then A and B are mg-closed.

Proof. Let $A \subseteq B \subseteq A_*$. Then by Lemmas 2.1 and 2.2, we have $A_* \subseteq B_* \subseteq (A_*)_* \subseteq A_*$ and hence $A_* = B_*$. Therefore, A and B are M_*-dense in itself. Since $A \subseteq B \subseteq A_* \subseteq Cl_*(A)$, then by Theorem 3.3, B is I^*_g-closed. Therefore, by Theorem 3.2, A and B are mg-closed. \hfill \square

Corollary 3.5. Let (X, M, I) be an ideal m-space and $I = \emptyset$. Then A is I^*_g-closed if and only if A is mg-closed.

Proof. The proof follows from the fact that for $I = \emptyset$, $A \subseteq mCl(A) = A_*$ and hence every subset of X is M_*-dense in itself. Therefore, by Theorem 3.2 every I^*_g-closed set is mg-closed. \hfill \square

The following theorem gives a characterization of I^*_g-open sets.

Theorem 3.4. Let (X, M, I) be an ideal m-space and A be a subset of X. Then A is I^*_g-open if and only if $F \subseteq Int_*(A)$ whenever F is m-closed and $F \subseteq A$.

Proof. Suppose A is \mathcal{I}_g^*-open. If F is m-closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $Cl_*(X - A) \subseteq X - F$. Therefore, $F \subseteq Int_*(A)$. Conversely, suppose the condition holds. Let $U \in \mathcal{M}$ such that $X - A \subseteq U$. Then $X - U \subseteq A$ and so $X - U \subseteq Int_*(A)$ which implies that $Cl_*(X - A) \subseteq U$. Therefore, $X - A$ is \mathcal{I}_g^*-closed and so A is \mathcal{I}_g^*-open. \hfill \square

Theorem 3.5. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B be subsets of X. If A is \mathcal{I}_g^*-open and $Int_*(A) \subseteq B \subseteq A$, then B is \mathcal{I}_g^*-open.

Proof. This is an immediate consequence of Theorems 3.3 and 3.4. \hfill \square

Theorem 3.6. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. Then for the following statements, (1) implies (2) and (2) is equivalent to (3).

1. A is \mathcal{I}_g^*-closed.
2. $A \cup (X - A_*)$ is \mathcal{I}_g^*-closed.
3. $A_* - A$ is \mathcal{I}_g^*-open.

Proof. (1) \Rightarrow (2): Suppose A is \mathcal{I}_g^*-closed. If $U \in \mathcal{M}$ and $(A \cup (X - A_*)) \subseteq U$, then $X - U \subseteq X - (A \cup (X - A_*)) = A_* - A$. Since A is \mathcal{I}_g^*-closed, by Theorem 3.1, it follows that $X - U = \emptyset$ and hence $X = U$. Since X is the only m-open set containing $A \cup (X - A_*), A \cup (X - A_*)$ is \mathcal{I}_g^*-closed.

(2) \iff (3): This follows from the fact that $A \cup (X - A_*) = X - (A_* - A). \hfill \square

Definition 3.5. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B be subsets of X such that $B \subseteq A$. Then

1. The family $\{U \subseteq A : U = V \cap A \text{ for some } V \in \mathcal{M}\}$ is an \mathcal{M}-structure on A and is denoted by \mathcal{M}_A.
2. The family $\{I \subseteq A : I \in \mathcal{I}\}$ is an ideal on A and is denoted by \mathcal{I}_A.
(3) For the ideal m-space $(A, \mathcal{M}_A, \mathcal{I}_A)$, the local function $B_{s(A)}$ is defined as follows: $B_{s(A)} = \{ x \in A : B \cap U \notin \mathcal{I}_A \text{ for any } U \in \mathcal{M}_A(x) \}$, where $\mathcal{M}_A(x) = \{ U \in \mathcal{M}_A : x \in U \}$.

Lemma 3.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and $B \subseteq A \subseteq X$. Then $B_{s(A)} = B_s \cap A$ holds.

Proof. First we prove $B_{s(A)} \subseteq B_s \cap A$. Let $x \notin B_s \cap A$. We consider the following two cases:

Case 1. $x \notin A$. Since $B_{s(A)} \subseteq A$, then $x \notin B_{s(A)}$.

Case 2. $x \in A$. In this case $x \notin B_s$. There exists a set $V \in \mathcal{M}$ such that $x \in V$ and $V \cap B \in \mathcal{I}$. Since $x \in A$, we have a set $A \cap V \in \mathcal{M}_A$ such that $x \in A \cap V$ and $(B \cap V) \cap A \in \mathcal{I}_A$. Consequently $x \notin B_{s(A)}$.

Secondly, we prove $B_s \cap A \subseteq B_{s(A)}$. Let $x \notin B_{s(A)}$. Then, there exists $V \in \mathcal{M}$ such that $x \in V \cap A \in \mathcal{M}_A$ and $(V \cap A) \cap B \in \mathcal{I}_A$. Since $B \subseteq A$, then $V \cap B \in \mathcal{I}_A \subseteq \mathcal{I}$, thus $V \cap B \in \mathcal{I}$ for some $V \in \mathcal{M}$ containing x. This shows that $x \notin B_s$. Therefore, we obtain $x \notin B_s \cap A$. \square

Theorem 3.7. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Let $B \subseteq A \subseteq X$, where A is an \mathcal{I}_g-closed and m-open set. Then B is \mathcal{I}_g-closed in $(A, \mathcal{M}_A, \mathcal{I}_A)$ if and only if B is \mathcal{I}_g-closed in $(X, \mathcal{M}, \mathcal{I})$.

Proof. We first note that since $B \subseteq A$ and A is both \mathcal{I}_g-closed and m-open, then $A_s \subseteq A$ and thus $B_s \subseteq A_s \subseteq A$. By Lemma 3.1, $A \cap B_s = B_{s(A)}$ and we have $B_s = B_{s(A)} \subseteq A$.

Necessity. Suppose that B is \mathcal{I}_g-closed in A. If U is an m-open subset of X such that $B \subseteq U$, then $B = B \cap A \subseteq U \cap A$, where $U \cap A$ is m-open in A. Since B is \mathcal{I}_g-closed in A, $B_s = B_{s(A)} \subseteq U \cap A \subseteq U$. Therefore B is \mathcal{I}_g-closed in X.

Sufficiency. Suppose that B is I_g^*-closed in X. Let U be an m-open subset of A such that $B \subseteq U$. Then $U = V \cap A$ for some m-open subset V of X. Since $B \subseteq V$ and B is I_g^*-closed in X, $B_* \subseteq V$. Thus $B_*(A) = B_* \cap A \subseteq V \cap A = U$. Therefore B is I_g^*-closed in A.

\[\square \]

4. T_\ast-spaces

Proposition 4.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For $x \in X$, the set $X - \{x\}$ is I_g^*-closed or m-open.

Proof. Suppose $X - \{x\}$ is not m-open. Then X is the only m-open set containing $X - \{x\}$. This implies that $(X - \{x\})_* \subseteq X$. Hence $X - \{x\}$ is I_g^*-closed.

Definition 4.1. An ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is called a T_\ast-space if every I_g^*-closed set in $(X, \mathcal{M}, \mathcal{I})$ is \mathcal{M}_\ast-closed.

Theorem 4.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then the following properties are equivalent:

(1) X is a T_\ast-space.

(2) Every singleton of X is either m-closed or \mathcal{M}_\ast-open.

Proof. (1) \Rightarrow (2): Let $x \in X$. If $\{x\}$ is not m-closed. Then $X - \{x\}$ is not m-open and hence by Proposition 4.1 $X - \{x\}$ is I_g^*-closed. Since $(X, \mathcal{M}, \mathcal{I})$ is a T_\ast-space, $X - \{x\}$ is \mathcal{M}_\ast-closed and thus $\{x\}$ is \mathcal{M}_\ast-open.

(2) \Rightarrow (1): Let A be an I_g^*-closed subset of $(X, \mathcal{M}, \mathcal{I})$ and $x \in A_*$. We show that $x \in A$.

Case 1. If $\{x\}$ is m-closed and $x \notin A$, then $A \subseteq X - \{x\} \in \mathcal{M}$. Since A is I_g^*-closed, $A_* \subseteq X - \{x\}$. This is contrary to $x \in A_*$. Hence $x \in A$.

Case 2. If \(\{x\} \) is \(\mathcal{M}_* \)-open, since \(x \in A_* \subseteq Cl_*(A) \), then \(\{x\} \cap A \neq \emptyset \). Hence \(x \in A \). Thus in both cases we have \(x \in A \). Therefore, \(A_* \subseteq A \) and hence \(A \) is \(\mathcal{M}_* \)-closed. This shows that \(X \) is a \(T_* \)-space. \(\square \)

We recall that a topological space \((X, \tau)\) is called a \(T^{\frac{1}{2}}_2 \)-space \([5]\) if every \(g \)-closed set of \(X \) is closed in \(X \).

Proposition 4.2. If an ideal \(m \)-space \((X, \mathcal{M}, \mathcal{I})\) is a \(T_* \)-space, then the topological space \((X, \mathcal{M}_*)\) is a \(T^{\frac{1}{2}}_2 \)-space.

Proof. Let \(A \) be any \(g \)-closed set of \((X, \mathcal{M}_*)\). Suppose that \(A \subseteq U \) and \(U \in \mathcal{M} \). Then \(U \in \mathcal{M}_* \) and hence \(Cl_*(A) \subseteq U \). Therefore, \(A \) is \(\mathcal{I}_g \)-closed and by the hypothesis \(A \) is \(\mathcal{M}_* \)-closed. This shows that \((X, \mathcal{M}_*)\) is a \(T^{\frac{1}{2}}_2 \)-space. \(\square \)

Definition 4.2. \([2]\) An ideal topological space \((X, \tau, \mathcal{I})\) is called a \(T\mathcal{I}_2 \)-space if every \(\mathcal{I} \)-\(g \)-closed set of \(X \) is \(\tau^* \)-closed.

Corollary 4.1. Let \((X, \tau, \mathcal{I})\) be an ideal topological space. Then the following implications hold:

\[
(X, \tau) \text{ is } T^{\frac{1}{2}}_2 \quad \longrightarrow \quad (X, \tau, \mathcal{I}) \text{ is } T\mathcal{I}_2 \quad \longrightarrow \quad (X, \tau^*) \text{ is } T^{\frac{1}{2}}_2
\]

Proof. The first implication follows from Corollary 3.4 of \([2]\). By putting \(\tau = \mathcal{M} \) in Proposition 4.2, we obtain the second implication. \(\square \)

ACKNOWLEDGEMENT

The authors wishes to thank the referees for useful comments and suggestions.

REFERENCES

(1) Al al-Bayt University, Department of Mathematics, Mafraq, Jordan

E-mail address: omarimutah1@yahoo.com

(2) 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

E-mail address: t.noiri@nifty.com