ON A BEST EXTENSION OF A HALF-DISCRETE HILBERT-TYPE INEQUALITY

BICHENG YANG

Abstract. By using the way of weight functions and the technique of real analysis, a best extension of a half-discrete Hilbert-type inequality with one-pair conjugate exponents and two interval variables is given. The equivalent forms, the operator expressions and the reverses are considered.

1. Introduction

Suppose that $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$, $f(\geq 0) \in L^p(0, \infty)$, $g(\geq 0) \in L^q(0, \infty)$, $||f||_p = \{\int_0^\infty f^p(x)dx\}^{\frac{1}{p}} > 0$, $||g||_q > 0$. Then we have the following famous Hardy-Hilbert’s integral inequality (cf. [1]):

\begin{equation}
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}dxdy < \frac{\pi}{\sin(\pi/p)} ||f||_p||g||_q,
\end{equation}

where the constant factor $\frac{\pi}{\sin(\pi/p)}$ is the best possible. If $a_m, b_n \geq 0, a = \{a_m\}_{m=1}^\infty \in l^p, b = \{b_n\}_{n=1}^\infty \in l^q, ||a||_p = \{\sum_{m=1}^\infty a_m^p\}^{\frac{1}{p}} > 0, ||b||_q > 0$, then we still have the following discrete Hardy-Hilbert’s inequality with the same best constant factor $\frac{\pi}{\sin(\pi/p)}$:

\begin{equation}
\sum_{m=1}^\infty \sum_{n=1}^\infty \frac{a_mb_n}{m+n} < \frac{\pi}{\sin(\pi/p)} ||a||_p||b||_q,
\end{equation}

2000 Mathematics Subject Classification. 26D15, 47A07.

Key words and phrases. Hilbert-type inequality, variable, weight function, equivalent form, reverse.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Sept. 27, 2011

Accepted: Sept. 2, 2012.
Inequalities (1.1) and (1.2) are important in analysis and its applications (cf. [2], [3], [4]). In 1998, by introducing an independent parameter $\lambda \in (0, 1]$, Yang [5] gave an extension of (1.1) (for $p = q = 2$). Recently, by using the way of weight functions, Yang [6] gave some best extensions of (1.1) and (1.2) as follows: For $r > 1$, $\frac{1}{r} + \frac{1}{s} = 1$, we have

$$f(u_{n}) = \left(\int_{0}^{\infty} |f(x)|^{p}dx\right)^{\frac{1}{p}}$$

$$n_{0} = 1$$

where, $B(u, v) = \int_{0}^{\infty} \frac{1}{(1 + t)^{u+v}} dt(u, v > 0)$ is the Beta function and $\phi(x) = x^{p(1-\frac{1}{s})-1}$, $\phi(x) = x^{q(1-\frac{1}{s})-1}$, $0 < ||f||_{p, \phi} := \left\{\int_{0}^{\infty} \phi(x)|f(x)|^{p}dx\right\}^{\frac{1}{p}} < \infty$, $0 < ||g||_{q, \psi} < \infty$, $0 < ||a||_{p, \phi} := \left\{\sum_{n=1}^{\infty} \phi(n)|a_{n}|n\right\}^{\frac{1}{p}} < \infty$ and $0 < ||b||_{q, \psi} < \infty$. Some Hilbert-type inequalities about the other measurable kernels are provided in [7]-[14].

About the case of half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy et al. provided some results in Theorem 351 of [1]. But they did not prove that the the constant factors in the inequalities are the best possible. And Yang [15] gave a result with the kernel $1_{n_{0}+x}$ similar to $\frac{1}{n_{0}+x}$ by introducing an interval variable as follows: If $u(t)$ is a differentiable strictly increasing function in $(n_{0} - 1, \infty)(n_{0} \in \mathbb{N})$, such that $u((n_{0} - 1)^{+}) = 0$ and $u(\infty) = \infty$, $\lambda > 0$,

$$(u(t))^{\frac{2-\lambda}{2}}u'(t))(t \in (n_{0} - 1, \infty))$$

is decreasing, and

$$f(x), a_{n} \geq 0, 0 < \int_{n_{0}-1}^{\infty} \frac{(u(x))^{1-\lambda}}{u(x)} f^{2}(x) dx < \infty, 0 < \sum_{n=n_{0}}^{\infty} \frac{(u(n))^{1-\lambda}}{u(n)} a_{n}^{2} < \infty,$$

then

$$\int_{n_{0}-1}^{\infty} f(x) \sum_{n=n_{0}}^{\infty} \frac{a_{n}}{(1 + u(n)u(x))^{\lambda}} dx$$

$$< B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \left\{\int_{n_{0}-1}^{\infty} \frac{(u(x))^{1-\lambda}}{u'(x)} f^{2}(x) dx \sum_{n=n_{0}}^{\infty} \frac{(u(n))^{1-\lambda}}{u'(n)} a_{n}^{2}\right\}^{\frac{1}{2}},$$

where the constant factor $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ is the best possible.
In this paper, by using the way of weight functions and the technique of real analysis, a best extension of (1.5) with one-pair conjugate exponents and two interval variables is given. The equivalent forms, the operator expressions and some reverses are considered.

2. Some Lemmas

Lemma 2.1. If \(\lambda > 0, u(x)(x \in (b, c)), v(x)(x \in (n_0 - 1, \infty), n_0 \in \mathbb{N}) \) are strictly increasing differentiable functions and \([v(x)]^{\frac{1}{2}} - v'_{x} \) is decreasing with \(u(b^+) = v((n_0 - 1)^+) = 0, u(c^-) = v(\infty) = \infty \), define two weight functions as follows

\[
\omega(n) : = [v(n)]^{\frac{1}{2}} \int_{b}^{c} \frac{u'(x)}{(1 + v(n)u(x))^{\lambda}} [u(x)]^{\frac{1}{2} - 1} dx, n \geq n_0 (n \in \mathbb{N}),
\]

\[
\varpi(x) : = [u(x)]^{\frac{1}{2}} \sum_{n=n_0}^{\infty} \frac{v'(n)}{(1 + v(n)u(x))^{\lambda}} [v(n)]^{\frac{1}{2} - 1}, x \in (b, c).
\]

If we define the function \(\theta_{\lambda}(x) \) as follows, then we have the following inequality:

\[
\begin{aligned}
0 &< B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)(1 - \theta_{\lambda}(x)) < \varpi(x) < \omega(n) = B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right), \\
\theta_{\lambda}(x) &:= \frac{1}{B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)} \int_{0}^{\infty} \frac{u(x)v(n_0)}{(1 + u(x)v(y))^{\lambda}} t^{\frac{1}{2} - 1} dt = O([u(x)]^{\frac{1}{2}}), x \in (b, c).
\end{aligned}
\]

Proof. Setting \(t = v(n_0)u(x) \) in (2.1), we find

\[
\omega(n) = \int_{0}^{\infty} \frac{1}{(t + 1)^{\lambda}} t^{\frac{1}{2} - 1} dt = B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right).
\]

For any fixed \(x \in (b, c) \), in view of the fact that the function

\[
\frac{[v(y)]^{\frac{1}{2} - 1}v'(y)}{(1 + u(x)v(y))^{\lambda}} (y \in (n_0 - 1, \infty))
\]

is strictly decreasing, we find

\[
\begin{aligned}
\varpi(x) &< [u(x)]^{\frac{1}{2}} \int_{n_0 - 1}^{\infty} \frac{1}{(1 + u(x)v(y))^{\lambda}} [v(y)]^{\frac{1}{2} - 1} v'(y) dy \\
&= \frac{1}{(t + 1)^{\lambda}} t^{\frac{1}{2} - 1} dt = B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) = \omega(n).
\end{aligned}
\]
Moreover,
\[
\varpi(x) > [u(x)]^{\frac{1}{2}} \int_{n_0}^{\infty} \frac{1}{(1 + u(x)v(y))^{\lambda}} [v(y)]^{\frac{1}{2} - 1} v'(y) dy
\]
\[
t = u(x) \varpi(y) \int_{u(x)v(n_0)}^{\infty} \frac{t^{\frac{1}{2} - 1}}{(t + 1)^\lambda} dt = B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)[1 - \theta_\lambda(x)].
\]
Clearly \(\theta_\lambda(x) > 0 \) and
\[
\theta_\lambda(x) < \frac{1}{B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)} \int_{0}^{u(x)v(n_0)} t^{\frac{1}{2} - 1} dt = \frac{2}{\lambda B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)} (u(x)v(n_0))^{\frac{1}{2}}.
\]
Hence, we have (2.3) and (2.4).

□

Lemma 2.2. Let the assumptions of Lemma 2.1 be fulfilled and additionally,
\[p > 0(p \neq 1), \frac{1}{p} + \frac{1}{q} = 1, a_n \geq 0, n \geq n_0 (n \in \mathbb{N}), f(x) \text{ is a non-negative measurable function in } (b,c). \text{ Then}
\]
\((i) \) for \(p > 1 \), we have the following inequalities:
\[
J_1 : = \left\{ \sum_{n=n_0}^{\infty} \frac{v'(n)}{v(n)^{1-\frac{2p}{q}}} \left[\int_{b}^{c} \frac{f(x)}{(1 + v(n)u(x))^{\lambda}} dx \right]^{p} \right\}^{\frac{1}{p}} \leq \left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \right]^{\frac{1}{q} \frac{1}{q}} \left\{ \int_{b}^{c} \varpi(x) \frac{[u(x)]^{p(1-\frac{2}{q})-1}}{[v'(x)]^{p-1}} f^p(x) dx \right\}^{\frac{1}{p}},
\]
\[
(2.5)
\]
and
\[
L_1 : = \left\{ \int_{b}^{c} \varpi(x)^{1-q} u'(x) \left[\sum_{n=n_0}^{\infty} \frac{a_n}{(1 + u(x)v(n))^{\lambda}} \right] \left[\sum_{n=n_0}^{\infty} \frac{a_n}{(1 + u(x)v(n))^{\lambda}} \right]^{\frac{1}{q}} dx \right\}^{\frac{1}{q}} \leq \left\{ B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \sum_{n=n_0}^{\infty} \frac{[v(n)]^{q(1-\frac{2}{q})-1}}{[v'(n)]^{q-1} a_n^q} \right\}^{\frac{1}{q}};
\]
\[
(2.6)
\]
\((ii) \) for \(0 < p < 1 \), we have the reverses of (2.5) and (2.6).
Proof. (1) By Hölder’s inequality (cf. [16]) and (2.3), we have

\[
\left[\int_b^c \frac{f(x)}{(1 + v(n)u(x))^\lambda} \, dx \right]^p \\
= \left\{ \int_b^c \frac{1}{(1 + v(n)u(x))^\lambda} \left[\frac{u(x)}{v(n)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{1/q} \right. \left[\frac{v(n)}{u(x)} \right]^{(1 - \frac{1}{q})/p} \left[v'(n) \right]^{1/q} \left[f(x) \right] \right. \\
\times \left[\frac{v(n)}{u(x)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{1/q} \left[v'(n) \right]^{1/q} \left. \, dx \right\}^p \\
\leq \int_b^c \frac{v'(n)}{(1 + v(n)u(x))^\lambda} \left[\frac{u(x)}{v(n)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{p-1} f^p(x) \, dx \\
\times \left\{ \int_b^c \frac{u'(x)}{(1 + v(n)u(x))^\lambda} \left[\frac{v(n)}{u(x)} \right]^{(1 - \frac{1}{q})/p} \left[v'(n) \right]^{p-1} \, dx \right\}^{p-1} \\
= \frac{[B(\frac{\lambda}{2}, \frac{\lambda}{2})]}{[v(n)]^\frac{\lambda}{p - 1}} v'(n) \left[\frac{v(n)}{u(x)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{p-1} \, dx.
\]

Then by Lebesgue term by term integration theorem (cf. [17]), we have

\[
J_1 \leq \left[B(\frac{\lambda}{2}, \frac{\lambda}{2}) \right]^\frac{1}{q} \left\{ \sum_{n=n_0}^\infty \frac{v'(n)f^p(x)}{(1 + v(n)u(x))^\lambda} \left[\frac{u(x)}{v(n)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{p-1} \, dx \right\}^{\frac{1}{p}} \\
= \left[B(\frac{\lambda}{2}, \frac{\lambda}{2}) \right]^\frac{1}{q} \left\{ \int_b^c \sum_{n=n_0}^\infty \frac{v'(n)f^p(x)}{(1 + v(n)u(x))^\lambda} \left[\frac{u(x)}{v(n)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{p-1} \, dx \right\}^{\frac{1}{p}} \\
= \left[B(\frac{\lambda}{2}, \frac{\lambda}{2}) \right]^\frac{1}{q} \left\{ \int_b^c \sum_{n=n_0}^\infty \frac{v'(n)f^p(x)}{[u'(x)]^{p-1}} \left[\frac{u(x)}{v(n)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{p-1} \, dx \right\}^{\frac{1}{p}},
\]

and (2.5) follows. Still by Hölder’s inequality, we have

\[
\left[\sum_{n=n_0}^\infty \frac{a_n}{(1 + u(x)v(n))^\lambda} \right]^q \\
= \left\{ \sum_{n=n_0}^\infty \frac{1}{(1 + u(x)v(n))^\lambda} \left[\frac{u(x)}{v(n)} \right]^{(1 - \frac{1}{q})/p} \left[u'(x) \right]^{1/q} \left[v(n) \right]^{(1 - \frac{1}{q})/p} \left[v'(n) \right]^{1/q} \right. \left[a_n \right] \left[v'(n) \right]^{1/q} \left[u'(x) \right]^{1/q} \left[v(n) \right]^{(1 - \frac{1}{q})/p} \left[u(x) \right]^{(1 - \frac{1}{q})/p} \left[v(n) \right]^{(1 - \frac{1}{q})/p} \left[v'(n) \right]^{1/q} \right. \left[a_n \right] \left. \right\}^{q}
\]
Then we have

\[
\sum_{n=n_0}^\infty \frac{1}{(1 + u(x)v(n))^\lambda} \frac{[u(x)]^{(1 - \frac{1}{2})} (p - 1)}{[v(n)]^{1 - \frac{1}{2}}} \frac{v'(n)}{|u'(x)|^{p - 1}} \right)^{q - 1}
\]

\[
\times \sum_{n=n_0}^\infty \frac{1}{(1 + u(x)v(n))^\lambda} \frac{[v(n)]^{(1 - \frac{1}{2})(q - 1)}}{|u(x)|^{1 - \frac{1}{2}}} \frac{u'(x)}{|v'(n)|^{q - 1}} a_n^q
\]

\[
= \frac{[u(x)]^{1 - \frac{1}{2}}}{[w(x)]^{1 - q} u'(x)} \sum_{n=n_0}^\infty \frac{[u(x)]^{\frac{3}{2} - 1} u'(x)[v(n)]^{\frac{3}{2}} [v(n)]^{q(1 - \frac{1}{2}) - 1}}{(1 + u(x)v(n))^\lambda} \frac{v'(n)}{|v'(n)|^{q - 1}} a_n^q.
\]

Then we have

\[
L_1 \leq \left\{ \int_b^c \left\{ \sum_{n=n_0}^\infty \frac{[u(x)]^{\frac{3}{2} - 1} u'(x)[v(n)]^{\frac{3}{2}} [v(n)]^{q(1 - \frac{1}{2}) - 1}}{(1 + u(x)v(n))^\lambda} \frac{v'(n)}{|v'(n)|^{q - 1}} a_n^q \right\} dx \right\}^{\frac{1}{q}}
\]

\[
= \left\{ \sum_{n=n_0}^\infty \frac{[v(n)]^{\frac{3}{2}}}{[u(x)]^{\frac{3}{2} - 1} u'(x)} \int_b^c \frac{[u(x)]^{\frac{3}{2} - 1} u'(x) [v(n)]^{\frac{3}{2}} [v(n)]^{q(1 - \frac{1}{2}) - 1}}{(1 + u(x)v(n))^\lambda} \frac{v'(n)}{|v'(n)|^{q - 1}} a_n^q \right\}^{\frac{1}{q}}
\]

\[
\leq \left\{ \sum_{n=n_0}^\infty \frac{\omega(n)}{[v(n)]^{q(1 - \frac{1}{2}) - 1}} \frac{a_n^q}{[v'(n)]^{q - 1}} \right\}^{\frac{1}{q}},
\]

and then in view of (2.3), since \(\omega(n) = B(\frac{1}{2}, \frac{1}{2}) \), inequality (2.6) follows.

(ii) By the reverse Holder’s inequality (cf. [16]) and the same way, for \(q < 0 \), we have the reverses of (2.5) and (2.6).

\[\square\]

3. Main Results

Setting \(\Phi(x) := \frac{[u(x)]^{p(1 - \frac{1}{2}) - 1}}{|w'(x)|^p}, \Phi(x) := (1 - \theta_\lambda(x)) \Phi(x)(x \in (b, c)), \)

\(\Psi(n) := [v(n)]^{q(1 - \frac{1}{2}) - 1}(n \in \mathbb{N}, n \geq n_0), \)

we have \([\Phi(x)]^{1 - q} = \frac{u'(x)}{|w(x)|^{1 - \frac{2q}{p}}}, [\Psi(n)]^{1 - p} = \frac{v'(n)}{|v(n)|^{1 - \frac{2q}{p}}}. \)

Theorem 3.1. Let the assumptions of Lemma 2.1 be fulfilled and additionally, \(p > 1, \frac{1}{p} + \frac{1}{q} = 1, f(x) \geq 0(x \in (b, c)), a_n \geq 0, n \geq n_0(n \in \mathbb{N}), \)
\(f \in L_{p,\Phi}(b, c), a = \{a_n\}_{n=n_0}^\infty \in l_{q,\Psi}, 0 < ||f||_{p,\Phi} = \{\int_b^c \Phi(x) f^p(x) dx\}^{\frac{1}{p}} < \infty \) and

\[
0 < ||a||_{q,\Psi} = \{\sum_{n=n_0}^{\infty} \Psi(n) a_n^q\}^{\frac{1}{q}} < \infty.
\]

Then we have the following equivalent inequalities:

\[
I := \sum_{n=n_0}^{\infty} \int_b^c \frac{a_n f(x) dx}{(1 + v(n) u(x))^\lambda} = \int_b^c \sum_{n=n_0}^{\infty} \frac{a_n f(x) dx}{(1 + u(x)v(n))^\lambda}
\]

\[
< B(\frac{\lambda}{2}, \frac{\lambda}{2}) ||f||_{p,\Phi} ||a||_{q,\Psi}, \tag{3.1}
\]

\[
J := \left\{ \sum_{n=n_0}^{\infty} [\Psi(n)]^{1-q} \left[\int_b^c \frac{f(x) dx}{(1 + v(n) u(x))^\lambda} \right]^p \right\}^{\frac{1}{p}}
\]

\[
< B(\frac{\lambda}{2}, \frac{\lambda}{2}) ||f||_{p,\Phi}, \tag{3.2}
\]

and

\[
L := \left\{ \int_b^c [\Phi(x)]^{1-q} \left[\sum_{n=n_0}^{\infty} \frac{a_n}{\Phi(n)^q} \right]^q dx \right\}^{\frac{1}{q}}
\]

\[
< B(\frac{\lambda}{2}, \frac{\lambda}{2}) ||a||_{q,\Psi}, \tag{3.3}
\]

where the same constant factor \(B(\frac{\lambda}{2}, \frac{\lambda}{2}) \) in the above inequalities is the best possible.

Proof. By Lebesgue term by term integration theorem (cf. [17]), there are two expressions for \(I \) in (3.1). In view of (2.3) and (2.5), for \(\varpi(x) < B(\frac{\lambda}{r}, \frac{\lambda}{s}) \), we have (3.2). By Hölder’s inequality, we have

\[
I = \sum_{n=n_0}^{\infty} [\Psi^{-\frac{1}{p}}(n) \int_b^c \frac{f(x) dx}{(1 + v(n) u(x))^\lambda}] [\Psi^{-\frac{1}{q}}(n) a_n] \leq J ||a||_{q,\Psi}. \tag{3.4}
\]

Then by (3.2), we have (3.1). On the other-hand, assuming that (3.1) is valid, setting

\[
a_n := [\Psi(n)]^{1-p} \left[\int_b^c \frac{f(x) dx}{(1 + v(n) u(x))^{\lambda}} \right]^{p-1}, n \geq n_0,
\]

we can choose the best constant factor.
then $J^{p-1} = ||a||_{q,\Psi}$. By (2.5), we find $J < \infty$. If $J = 0$, then (3.2) is naturally valid; if $J > 0$, then by (3.1), we have

$$||a||^q_{q,\Psi} = J^p = I < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||f||_{p,\Phi}||a||_{q,\Psi},$$

$$||a||^{q-1}_{q,\Psi} = J < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||f||_{p,\Phi},$$

and we have (3.2), which is equivalent to (3.1).

In view of (2.3) and (2.6), for $[\varpi(x)]^{1-q} > [B(\frac{\lambda}{2}, \frac{\lambda}{2})]^{1-q}$, we have (3.3). By Hölder’s inequality, we find

$$I = \int_b^c \Phi^{\frac{1}{p}}(x)f(x)||\Phi^{\frac{1}{q}}(x)\sum_{n=n_0}^{\infty} \frac{a_n}{(1+u(x)v(n))^\lambda}||dx \leq ||f||_{p,\Phi}L. \tag{3.5}$$

Then by (3.3), we have (3.1). On the other-hand, assuming that (3.1) is valid, setting

$$f(x) := \Phi(x)^{1-q}\left[\sum_{n=n_0}^{\infty} \frac{a_n}{(1+u(x)v(n))^\lambda}\right]^{q-1}, x \in (b, c),$$

then $L^{q-1} = ||f||_{p,\Phi}$. By (2.6), we find $L < \infty$. If $L = 0$, then (3.3) is naturally valid; if $L > 0$, then by (3.1), we have

$$||f||^q_{p,\Phi} = L^q = I < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||f||_{p,\Phi}||a||_{q,\Psi},$$

$$||f||^{q-1}_{p,\Phi} = L < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||a||_{q,\Psi},$$

and we have (3.3) which is equivalent to (3.1).

Hence, inequalities (3.1), (3.2) and (3.3) are equivalent.

There exists an unified constant $d \in (b, c)$, satisfying $u(d) = 1$. For $0 < \varepsilon < \frac{q\lambda}{2}$, setting $\tilde{f}(x) = [u(x)]^{\frac{1}{p}+\frac{\varepsilon}{2}-1}u'(x), x \in (b, d); \tilde{f}(x) = 0, x \in [d, c), \tilde{a_n} = [v(n)]^{\frac{1}{q}-\frac{\varepsilon}{2}-1}v'(n), n \geq n_0$, if there exists a positive number $k(\leq B(\frac{\lambda}{2}, \frac{\lambda}{2}))$, such that (3.1) is still valid
as we replace $B(\frac{1}{2}, \frac{1}{2})$ by k, then in particular, we have

$$
\int_1^c \sum_{n=n_0}^{\infty} \frac{\tilde{a}_n f(x)dx}{(1+u(x)v(n))^\lambda} < k||f||_{p,\Phi}||\tilde{a}||_{q,\Psi}
$$

$$
= k\frac{1}{\varepsilon} \int_1^c \sum_{n=n_0}^{\infty} [v(n)]^{\varepsilon-1} v'(n) dx
$$

\leq k\frac{1}{\varepsilon} \int_1^c \sum_{n=n_0}^{\infty} [v(y)]^{\varepsilon-1} v'(y) dy

(3.6)

$$
= k\frac{1}{\varepsilon} \sum_{n=n_0}^{\infty} [v(n)]^{\varepsilon-1} v'(n) + [v(n)]^{-\varepsilon} v'(n) dy
$$

In view of the decreasing property of $\frac{1}{(1+u(x)v(y))^{\lambda}} [v(y)]^{\varepsilon-1} v'(y)$, we find

$$
\int_1^c \sum_{n=n_0}^{\infty} [v(n)]^{\varepsilon-1} v'(n) dx
$$

$$
\geq \int_1^c \sum_{n=n_0}^{\infty} [v(y)]^{\varepsilon-1} v'(y) dy
$$

$$
= \frac{1}{\varepsilon} B(\frac{\lambda}{2} - \frac{\varepsilon}{q}, \frac{\lambda}{2} + \frac{\varepsilon}{q}) - A(x),
$$

where

$$
A(x) := \int_1^c [u(x)]^{\varepsilon-1} u'(x) \left[\int_0^{u(x)v(n_0)} \frac{t^{\frac{1}{2} - \frac{\varepsilon}{q} - 1}}{(1+t)^{\lambda}} dt \right] dx.
$$

Since we find

$$
0 < A(x) < \int_1^c [u(x)]^{\varepsilon-1} u'(x) \left[\int_0^{u(x)v(n_0)} t^{\frac{1}{2} - \frac{\varepsilon}{q} - 1} dt \right] dx
$$

$$
= \frac{[v(n_0)]^{\frac{1}{2} - \frac{\varepsilon}{q}}}{(\frac{1}{2} - \frac{\varepsilon}{q})(\frac{1}{2} + \frac{\varepsilon}{p})}.
$$
Hilbert’s operator T is an unified representation of $O(1)(\varepsilon \to 0^+)$. By (3.6) and (3.7), we have

$$B(\frac{\lambda}{2} - \frac{\varepsilon}{q}, \frac{\lambda}{2} + \frac{\varepsilon}{q}) - \varepsilon O(1) < k\{\varepsilon v(n_0)v'(n_0) + [v(n_0)]^{-\varepsilon}\}^{\frac{1}{q}},$$

and then $B(\frac{\lambda}{2}, \frac{\lambda}{2}) \leq k(\varepsilon \to 0^+)$. Hence $k = B(\frac{\lambda}{2}, \frac{\lambda}{2})$ is the best value of (3.1).

We confirm that the constant factor $B(\frac{\lambda}{2}, \frac{\lambda}{2})$ in (3.2) ((3.3)) is the best possible, otherwise we can came to a contradiction by (3.4) ((3.5)) that the constant factor in (3.1) is not the best possible.

Remark 1. Set two weight normal spaces as follows:

$$L_{p, \Phi}(b,c) = \{f|||f|||_{p, \Phi} < \infty, l_{q, \Psi} = \{a|||a|||_{q, \Psi} < \infty\}.$$

(i) Define a half-discrete Hilbert’s operator $T : L_{p, \Phi}(b,c) \to L_{p, \Psi}$ as follows: For $f \in L_{p, \Phi}(b,c)$, there exists an unified representation $Tf \in L_{p, \Psi}$, satisfying $Tf(n) = \int_{\phi}^{\epsilon} f(x) (1+u(n))^{-\varepsilon} dx$, $n \geq n_0$. Then by (3.1), it follows $||Tf||_{p, \Psi} < B(\frac{\lambda}{2}, \frac{\lambda}{2})||f||_{p, \Phi}$ and T is bounded with $||T|| \leq B(\frac{\lambda}{2}, \frac{\lambda}{2})$. Since the constant factor in (3.2) is the best possible, we have $||T|| = B(\frac{\lambda}{2}, \frac{\lambda}{2})$.

(ii) Define a half-discrete Hilbert’s operator $\tilde{T} : l_{q, \Psi} \to L_{q, \Psi}$ as follows: For $a \in l_{q, \Psi}$, there exists an unified representation $\tilde{T}a \in L_{q, \Psi}$, satisfying

$$\tilde{T}a(x) = \sum_{n=n_0}^{\infty} a_n \frac{\epsilon(x(n))}{(1+u(n))^{-\varepsilon}}, x \in (b,c).$$

Then by (3.2), it follows $||\tilde{T}a||_{q, \Psi} < B(\frac{\lambda}{2}, \frac{\lambda}{2})||a||_{q, \Psi}$ and \tilde{T} is bounded with $||\tilde{T}|| \leq B(\frac{\lambda}{2}, \frac{\lambda}{2})$. Since the constant factor in (3.3) is the best possible, we have $||\tilde{T}|| = B(\frac{\lambda}{2}, \frac{\lambda}{2}) = ||T||$.

In the following theorem, for $0 < p < 1$, we still use the formal symbols of $||f||_{p, \Phi}$ and $||a||_{q, \Psi}$ et al.

Theorem 3.2. Let the assumptions of Lemma 2.1 be fulfilled and additionally, $0 < p < 1, \frac{1}{p} + \frac{1}{\xi} = 1, f(x) \geq 0(x \in (b,c)), a_n \geq 0(n \geq n_0, n \in \mathbb{N}),$ $0 < ||f||_{p, \Phi} = \{\int_{b}^{\epsilon} (1 - \theta_{\lambda}(x)) \Phi(x) f^p(x) dx\}^{\frac{1}{p}} < \infty$ and
0 < \|a\|_{q, \Psi} = \left\{ \sum_{n=n_0}^{\infty} \Psi(n)a_n^q \right\}^{\frac{1}{q}} < \infty. Then we have the following equivalent inequalities:

\[I = \sum_{n=n_0}^{\infty} \int_{b}^{c} \frac{a_n f(x) dx}{(1 + v(n)u(x))^\lambda} = \int_{b}^{c} \sum_{n=n_0}^{\infty} \frac{a_n f(x) dx}{(1 + u(x)v(n))^\lambda} \]

\[\geq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \|f\|_{p, \tilde{\Phi}} \|a\|_{q, \Psi}, \]

(3.8)

\[J = \left\{ \sum_{n=n_0}^{\infty} [\Psi(n)]^{1-p} \left[\int_{b}^{c} \frac{f(x) dx}{(1 + v(n)u(x))^\lambda} \right]^p \right\}^{\frac{1}{p}} \]

\[\geq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \|f\|_{p, \tilde{\Phi}}, \]

(3.9)

and

\[\tilde{L} = \left\{ \int_{b}^{c} [\tilde{\Phi}(x)]^{1-q} \left[\sum_{n=n_0}^{\infty} \frac{a_n}{(1 + u(x)v(n))^\lambda} \right]^q dx \right\}^{\frac{1}{q}} \]

\[\geq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \|a\|_{q, \Psi}. \]

(3.10)

Moreover, if there exists a constant \(\delta_0 > 0 \), such that for any \(\delta \in [0, \delta_0) \), \([v(y)]^{\frac{\lambda}{2} + \delta - 1} v'(y)\) is decreasing in \((n_0 - 1, \infty)\), then the same constant factor \(B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \) in the above inequalities is the best possible.

Proof. In view of (2.3) and the reverse of (2.5), for \(\varpi(x) > B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)(1 - \theta_\lambda(x)) \), we have (3.9). By the reverse Hölder’s inequality, we have

\[I = \sum_{n=n_0}^{\infty} \left[\Psi^{\frac{1}{q}}(n) \int_{b}^{c} \frac{f(x) dx}{(1 + v(n)u(x))^\lambda} \right] \left[\Psi^{\frac{1}{q}}(n)a_n \right] \geq J \|a\|_{q, \Psi}. \]

(3.11)

Then by (3.9), we have (3.8). On the other-hand, assuming that (3.8) is valid, setting \(a_n \) as Theorem 1, then \(J^{p-1} = \|a\|_{q, \Psi} \). By the reverse of (2.5), we find \(J > 0 \). If \(J = \infty \),
then (3.9) is naturally valid; if \(J < \infty \), then by (3.8), we have

\[
||a||^{q}_{q,\Psi} = J^p = I > B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||f||_{p,\tilde{\Phi}}||a||_{q,\Psi},
\]

\[
||a||^{q-1}_{q,\Psi} = J > B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||f||_{p,\tilde{\Phi}},
\]

and we have (3.9) which is equivalent to (3.8).

In view of (2.3) and the reverse of (2.6), for \([\varpi(x)]^{1-q} > [B(\frac{\lambda}{r}, \frac{\lambda}{s})(1-\theta_{\lambda}(x))]^{1-q}(q < 0)\), we have (3.10). By the reverse Hölder’s inequality, we have

\[(3.12) \quad I = \int_{b}^{c} \tilde{f}(x)dx \geq ||f||_{p,\tilde{\Phi}} \tilde{L}.
\]

Then by (3.10), we have (3.8). On the other-hand, assuming that (3.8) is valid, setting

\[
f(x) := [\tilde{\Phi}(x)]^{1-q}\left[\sum_{n=n_0}^{\infty} \frac{a_n}{(1+u(x)v(n))^\lambda}\right]^{q-1}, \quad x \in (b,c),
\]

then \(\tilde{L}^{q-1} = ||f||_{p,\tilde{\Phi}} \). By the reverse of (2.6), we find \(\tilde{L} > 0 \). If \(\tilde{L} = \infty \), then (3.10) is naturally valid; if \(\tilde{L} < \infty \), then by (3.8), we have

\[
||f||^p_{p,\tilde{\Phi}} = \tilde{L}^q = I > B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||f||_{p,\tilde{\Phi}}||a||_{q,\Psi},
\]

\[
||f||^{p-1}_{p,\tilde{\Phi}} = \tilde{L} > B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)||a||_{q,\Psi},
\]

and we have (3.10) which is equivalent to (3.8).

Hence inequalities (3.8), (3.9) and (3.10) are equivalent.

For \(0 < \varepsilon < \min\left\{ \frac{|a|}{2}, |q|\right\} \), setting \(\tilde{f}(x) = [u(x)]^{\frac{1}{2}+\varepsilon} u'(x), x \in (b,d) \); \(\tilde{f}(x) = 0, x \in [d,c) \), \(\tilde{a}_n = [v(n)]^{\frac{1}{2}+\varepsilon-1} v'(n) \), \(n \geq n_0 \), if there exists a positive number \(k(B(\frac{\lambda}{2}, \frac{\lambda}{2})) \), such that (3.8) is still valid as we replace \(B(\frac{\lambda}{2}, \frac{\lambda}{2}) \) by \(k \), then in particular, for \(q < 0 \), we have

\[
\tilde{I} := \int_{b}^{c} \sum_{n=n_0}^{\infty} \frac{\tilde{a}_n \tilde{f}(x)dx}{(1+u(x)v(n))^{\lambda}} > k||f||_{p,\tilde{\Phi}}||\tilde{a}||_{q,\Psi}
\]
\[k \left\{ \int_b^d (1 - O([u(x)]^2)) |u(x)|^{-\varepsilon} u'(x) dx \right\}^{\frac{1}{p}} \left\{ \sum_{n=n_0}^{\infty} |v(n)|^{-\varepsilon} v'(n) \right\}^{\frac{1}{q}} \]

\[= k \left\{ \frac{1}{\varepsilon} - O(1) \right\}^{\frac{1}{p}} \left\{ \sum_{n=n_0}^{\infty} |v(n)|^{-\varepsilon} v'(n) \right\}^{\frac{1}{q}} \]

\[\geq k \left\{ \frac{1}{\varepsilon} - O(1) \right\}^{\frac{1}{p}} \left\{ \sum_{n=n_0}^{\infty} |v(n)|^{-\varepsilon} v'(n) \right\}^{\frac{1}{q}} \]

\[= \frac{k}{\varepsilon} \left\{ 1 - \varepsilon O(1) \right\}^{\frac{1}{p}} \left\{ \varepsilon |v(n_0)|^{-\varepsilon} v'(n_0) + |v(n_0)|^{-\varepsilon} \right\}^{\frac{1}{q}}. \]

In view of the decreasing property of \(\frac{|v(y)|^{\frac{2}{p} - \frac{q}{q} - 1} v'(y)}{(1 + u(x)v(y))^\lambda} \), setting \(t = u(x)v(y) \), we find

\[\tilde{I} = \int_b^d |u(x)|^{\frac{2}{q} + \frac{q}{q} - 1} u'(x) \sum_{n=n_0}^{\infty} \frac{|v(n)|^{\frac{2}{q} - \frac{q}{q} - 1} v'(n)}{(1 + u(x)v(n))^\lambda} dx \]

\[\leq \int_b^d |u(x)|^{\frac{2}{q} + \frac{q}{q} - 1} u'(x) \left[\int_{n_0-1}^{\infty} \frac{|v(y)|^{\frac{2}{q} - \frac{q}{q} - 1} v'(y)}{(1 + u(x)v(y))^\lambda} dy \right] dx \]

\[= \int_b^d |u(x)|^{\lambda} u'(x) dx \int_0^{\infty} \frac{t^{\frac{2}{q} - \frac{q}{q} - 1}}{(1 + t)^\lambda} dt \]

\[= \frac{1}{\varepsilon} B\left(\frac{\lambda}{2} - \frac{\varepsilon}{q}, \frac{\lambda}{2} + \frac{\varepsilon}{q} \right). \]

By (3.13) and (3.14), we have

\[B\left(\frac{\lambda}{2} - \frac{\varepsilon}{q}, \frac{\lambda}{2} + \frac{\varepsilon}{q} \right) > k \left\{ 1 - \varepsilon O(1) \right\}^{\frac{1}{p}} \left\{ \varepsilon |v(n_0)|^{-\varepsilon} v'(n_0) + |v(n_0)|^{-\varepsilon} \right\}^{\frac{1}{q}}, \]

and then \(B\left(\frac{\lambda}{2}, \frac{\lambda}{2} \right) \geq k (\varepsilon \to 0^+) \). Hence \(k = B\left(\frac{\lambda}{2}, \frac{\lambda}{2} \right) \) is the best value of (3.8).

We confirm that the constant factor \(B\left(\frac{\lambda}{2}, \frac{\lambda}{2} \right) \) in (3.9) ((3.10)) is the best possible, otherwise we can came to a contradiction by (3.11) ((3.12)) that the constant factor in (3.8) is not the best possible.

\[\square \]

Remark 2. (i) If \(\alpha > 0, u(x) = x^\alpha, b = 0, c = \infty, v(n) = n^\alpha, n_0 = 1 \), then for \(0 < \alpha \lambda \leq 2 \), \(|v(x)|^{\frac{2}{q} - 1} v'(x) = \alpha x^{\frac{\alpha}{2} - 1} \) is decreasing. In particular, for \(\alpha = 1, 0 < \lambda \leq 2, u(x) = x(x \in (0, \infty)), v(n) = n(n \in \mathbb{N}) \) in (3.1), (3.2) and (3.3), we
have the following equivalent inequalities:

\[
I = \sum_{n=1}^{\infty} \int_0^\infty \frac{a_n f(x) dx}{(1 + nx)^\lambda} = \int_0^\infty \sum_{n=1}^{\infty} \frac{a_n f(x) dx}{(1 + nx)^\lambda}
\]

(3.15)

\[
< B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) ||f||_{p,\phi} ||a||_{q,\psi},
\]

(3.16)

\[
\left\{ \sum_{n=1}^{\infty} n^{\frac{\lambda}{2} - 1} \left[\int_0^\infty \frac{f(x)}{(1 + nx)^\lambda} dx \right]^p \right\}^{\frac{1}{p}} < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) ||f||_{p,\phi},
\]

and

(3.17)

\[
\left\{ \int_0^\infty x^{\frac{\lambda}{2} - 1} \left[\sum_{n=1}^{\infty} \frac{a_n}{(1 + nx)^\lambda} \right]^q dx \right\}^{\frac{1}{q}} < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) ||a||_{q,\psi}.
\]

(ii) For \(p = q = 2, b = n_0 - 1 = 0, c = \infty, v(x) = u(x) \) in (3.1), we have (1.5). Hence, (3.1) is a best extension of (1.5).

Acknowledgement

The author would like to thank the editor and the referees.

This work is supported by Guangdong Natural Science Foundation (No. 7004344).

References

Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. China

E-mail address: bcyang@gdei.edu.cn