QUASI b–OPEN AND STRONGLY b–OPEN FUNCTIONS

JAMAL M. MUSTAFA

Abstract. In this paper we introduce b–open, b–closed, quasi b–open, quasi b–closed, strongly b–open and strongly b–closed functions and investigate properties and characterizations of these new types of functions.

1. Introduction

In 1996, Andrijevic [1] introduced the notion of b–open sets. This type of sets discussed by El-Atik [3] under the name of γ–open sets. We continue to explore further properties and characterizations of b–open, quasi b–open and strongly b–open functions. We also introduce and study properties and characterizations of b–closed, quasi b–closed and strongly b–closed functions.

Let A be a subset of a space (X, τ). The closure (resp. interior) of A will be denoted by $\text{Cl}(A)$ (resp. $\text{Int}(A)$).

A subset A of a space (X, τ) is called b–open [1] if $A \subseteq \text{Cl}(\text{Int}(A)) \cup \text{Int}(\text{Cl}(A))$. The complement of a b–open set is called a b–closed set. The union of all b–open sets contained in A is called the b–interior of A, denoted by $b\text{Int}(A)$ and the intersection of all b–closed sets containing A is called the b–closure of A, denoted by $b\text{Cl}(A)$. The family of all b–open (resp. b–closed) sets in (X, τ) is denoted by $BO(X)$ (resp. $BC(X)$).

A subset A of a space (X, τ) is called semi–open [4] if $A \subseteq \text{Cl}(\text{Int}(A))$. The complement of a semi–open set is called semi–closed [2]. The family of all semi–open (resp. semi–closed) sets in (X, τ) is denoted by $SO(X)$ (respectively $SC(X)$).

2000 Mathematics Subject Classification. Primary: 54C05, Secondary: 54C08, 54C10.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: July 23, 2009
Accepted: April 5, 2010.
2. b–Open and b–Closed Functions

In this section we define the concept of b–open functions as a generalization of open functions and investigate some properties of such functions.

Definition 2.1. A function $f : (X, \tau) \to (Y, \rho)$ is called b–open if $f(U) \in BO(Y)$ for every open set U in X.

The following theorem follows immediately from the above definition.

Theorem 2.2. A function $f : (X, \tau) \to (Y, \rho)$ is b–open if and only if for each $x \in X$, and each open set U in X with $x \in U$, there exists a set $V \in BO(Y)$ containing $f(x)$ such that $V \subseteq f(U)$.

Theorem 2.3. Let $f : (X, \tau) \to (Y, \rho)$ be b–open. If $V \subseteq Y$ and C is a closed subset of X containing $f^{-1}(V)$, then there exists a set $F \in BC(Y)$ containing V such that $f^{-1}(F) \subseteq C$.

Proof. Let $F = Y - f(X - C)$. Then $F \in BC(Y)$. Since $f^{-1}(V) \subseteq C$, we have $f(X - C) \subseteq (Y - V)$ and so $V \subseteq F$.

Also $f^{-1}(F) = X - f^{-1}[f(X - C)] \subseteq X - (X - C) = C$. \square

Theorem 2.4. A function $f : (X, \tau) \to (Y, \rho)$ is b–open if and only if $f[\text{Int}(A)] \subseteq b\text{Int}[f(A)]$, for every $A \subseteq X$.

Proof. \Rightarrow). Let $A \subseteq X$ and $x \in \text{Int}(A)$. Then there exists an open set U_x in X such that $x \in U_x \subseteq A$. Now $f(x) \in f(U_x) \subseteq f(A)$. Since f is b–open, $f(U_x) \in BO(Y)$. Then $f(x) \in b\text{Int}[f(A)]$. Thus $f[\text{Int}(A)] \subseteq b\text{Int}[f(A)]$.

\Leftarrow). Let U be an open set in X. Then by assumption, $f[\text{Int}(U)] \subseteq b\text{Int}[f(U)]$. Since $b\text{Int}[f(U)] \subseteq f(U)$, $f(U) = b\text{Int}[f(U)]$. Thus $f(U) \in BO(Y)$.

So f is b–open. \square

The equality in the last theorem need not be true as shown in the following example.

Example 2.5. Let $X = Y = \{a, b\}$. Let τ be the indiscrete topology on X and ρ be the discrete topology on Y. Then $BO(X) = \{\emptyset, X, \{a\}, \{b\}\}$ and $BO(Y) = \rho$. Let $f : (X, \tau) \to (Y, \rho)$ be the identity function and $A = \{a\}$. Then $f[\text{Int}(A)] = \emptyset$ and $b\text{Int}[f(A)] = \{a\}$.

Theorem 2.6. A function $f : (X, \tau) \to (Y, \rho)$ is b–open if and only if $\text{Int}[f^{-1}(B)] \subseteq f^{-1}[b\text{Int}(B)]$, for every $B \subseteq Y$.

Proof. \Rightarrow). Let $B \subseteq Y$. Then $f[\text{Int}(f^{-1}(B))] \subseteq f[f^{-1}(B)] \subseteq B$.

But $f[\text{Int}(f^{-1}(B))] \in BO(Y)$ since $\text{Int}[f^{-1}(B)]$ is open in X and f is b–open. Hence, $f[\text{Int}(f^{-1}(B))] \subseteq b\text{Int}(B)$. Therefore $\text{Int}[f^{-1}(B)] \subseteq f^{-1}[b\text{Int}(B)]$.

\(\Leftarrow \). Let \(A \subseteq X \). Then \(f(A) \subseteq Y \). Hence by assumption, we obtain, \(\text{Int}(A) \subseteq \text{Int}[f^{-1}(f(A))] \subseteq f^{-1}[\text{bInt}(f(A))] \). Thus \(f[\text{Int}(A)] \subseteq \text{bInt}[f(A)] \), for every \(A \subseteq X \). Hence, by Theorem 2.4, \(f \) is \(b \)-open. \(\Box \)

Theorem 2.7. A function \(f : (X, \tau) \to (Y, \rho) \) is \(b \)-open if and only if
\(f^{-1}[\text{bCl}(B)] \subseteq \text{Cl}[f^{-1}(B)] \), for every \(B \subseteq Y \).

Proof. \(\Rightarrow \). Assume that \(f \) is \(b \)-open and \(B \subseteq Y \). Let \(x \in f^{-1}[\text{bCl}(B)] \). Then \(f(x) \in \text{bCl}(B) \). Let \(U \) be an open set in \(X \) such that \(x \in U \). Since \(f \) is \(b \)-open, then \(f(U) \in \text{BO}(Y) \). Therefore, \(B \cap f(U) \neq \emptyset \). Then \(U \cap f^{-1}(B) \neq \emptyset \). Hence \(x \in \text{Cl}[f^{-1}(B)] \). We conclude that \(f^{-1}[\text{bCl}(B)] \subseteq \text{Cl}[f^{-1}(B)] \).

\(\Leftarrow \). Let \(B \subseteq Y \). Then \((Y - B) \subseteq Y \). By assumption,
\[
 f^{-1}[\text{bCl}(Y - B)] \subseteq \text{Cl}[f^{-1}(Y - B)].
\]
This implies,
\[
 X - \text{Cl}[f^{-1}(Y - B)] \subseteq X - f^{-1}[\text{bCl}(Y - B)].
\]
Hence
\[
 X - \text{Cl}[X - f^{-1}(B)] \subseteq f^{-1}[Y - \text{bCl}(Y - B)].
\]
Now
\[
 X - \text{Cl}[X - f^{-1}(B)] = \text{Int}[X - (X - f^{-1}(B))] = \text{Int}[f^{-1}(B)]
\]
then we have \(Y - \text{bCl}(Y - B) = \text{bInt}[Y - (Y - B)] = \text{bInt}(B) \).
Then, \(\text{Int}[f^{-1}(B)] \subseteq f^{-1}[\text{bInt}(B)] \). Now from Theorem 2.6, it follows that \(f \) is \(b \)-open. \(\Box \)

Now we introduce \(b \)-closed functions and study certain properties of this type of functions.

Definition 2.8. A function \(f : (X, \tau) \to (Y, \rho) \) is called \(b \)-closed if \(f(C) \in \text{BC}(Y) \) for every closed set \(C \) in \(X \).

Theorem 2.9. A function \(f : (X, \tau) \to (Y, \rho) \) is \(b \)-closed if and only if
\(\text{bCl}[f(A)] \subseteq f[\text{Cl}(A)] \), for every \(A \subseteq X \).

Proof. \(\Rightarrow \). Let \(f \) be \(b \)-closed and let \(A \subseteq X \). Then \(f[\text{Cl}(A)] \in \text{BC}(Y) \). But \(f(A) \subseteq f[\text{Cl}(A)] \). Then \(\text{bCl}[f(A)] \subseteq f[\text{Cl}(A)] \).

\(\Leftarrow \). Let \(A \subseteq X \) be a closed set. Then by assumption,
\(\text{bCl}[f(A)] \subseteq f[\text{Cl}(A)] = f(A) \). This shows that \(f(A) \in \text{BC}(Y) \). Hence \(f \) is \(b \)-closed. \(\Box \)
Corollary 2.10. Let \(f : (X, \tau) \to (Y, \rho) \) be \(b \)-closed and let \(A \subseteq X \). Then \(\text{bInt}[\text{bCl}(f(A))] \subseteq f[\text{Cl}(A)] \).

Theorem 2.11. Let \(f : (X, \tau) \to (Y, \rho) \) be a surjective function. Then \(f \) is \(b \)-closed if and only if for each subset \(B \) of \(Y \) and each open set \(U \) in \(X \) containing \(f^{-1}(B) \), there exists a set \(V \in \text{BO}(Y) \) containing \(B \) such that \(f^{-1}(V) \subseteq U \).

Proof. \(\Rightarrow \). Let \(V = Y - f(X - U) \). Then \(V \in \text{BO}(Y) \). Since \(f^{-1}(B) \subseteq U \), we have \(f(X - U) \subseteq Y - B \) and so \(B \subseteq V \). Also,

\[
\begin{align*}
 f^{-1}(V) &= X - f^{-1}[f(X - U)] \\
 &\subseteq X - (X - U) = U.
\end{align*}
\]

\(\Leftarrow \). Let \(C \) be a closed set in \(X \) and \(y \in Y - f(C) \). Then, \(f^{-1}(y) \subseteq X - f^{-1}(f(C)) \subseteq X - C \) and \(X - C \) is open in \(X \). Hence by assumption, there exists a set \(V_y \in \text{BO}(Y) \) containing \(y \) such that \(f^{-1}(V_y) \subseteq X - C \). This implies that \(y \in V_y \subseteq Y - f(C) \). Thus \(Y - f(C) = \bigcup \{ V_y : y \in Y - f(C) \} \). Hence \(Y - f(C) \in \text{BO}(Y) \). Thus \(f(C) \in \text{BC}(Y) \). \(\square \)

Definition 2.12. [3]. A function \(f : (X, \tau) \to (Y, \rho) \) is said to be \(b \)-continuous if \(f^{-1}(V) \in \text{BO}(X) \) for every open set \(V \) in \(Y \).

Theorem 2.13. Let \(f : (X, \tau) \to (Y, \rho) \) be a bijection. Then the following are equivalent:

1) \(f \) is \(b \)-closed
2) \(f \) is \(b \)-open
3) \(f^{-1} \) is \(b \)-continuous

Proof. (1) \(\to \) (2). Let \(U \) be an open subset of \(X \). Then \(X - U \) is closed in \(X \). By (1), \(f(X - U) \in \text{BC}(Y) \). But \(f(X - U) = f(X) - f(U) = Y - f(U) \). Thus \(f(U) \in \text{BO}(Y) \).

(2) \(\to \) (3). Let \(U \) be an open subset of \(X \). Since \(f \) is \(b \)-open \(f(U) = (f^{-1})^{-1}(U) \in \text{BO}(Y) \). Hence \(f^{-1} \) is \(b \)-continuous.

(3) \(\to \) (1). Let \(C \) be an arbitrary closed set in \(X \). Then \(X - C \) is open in \(X \). Since \(f^{-1} \) is \(b \)-continuous, \((f^{-1})^{-1}(X - C) \in \text{BO}(Y) \). But,

\[
(f^{-1})^{-1}(X - C) = f(X - C) = Y - f(C).
\]

Thus, \(f(C) \in \text{BC}(Y) \). \(\square \)

Definition 2.14. [3]. A space \(X \) is called:

a) \(b - T_1 \) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist \(b \)-open sets \(U \) and \(V \) of \(X \) containing \(x \) and \(y \), respectively, such that \(y \notin U \) and \(x \notin V \).

b) \(b - T_2 \) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist disjoint \(b \)-open sets \(U \) and \(V \) of \(X \) such that \(x \in U \), \(y \in V \) and \(U \cap V = \phi \).
Theorem 2.15. Let \(f : (X, \tau) \rightarrow (Y, \rho) \) be a \(b \)-open bijection. Then the following hold

a) If \(X \) is \(T_1 \) then \(Y \) is \(b-T_1 \).
b) If \(X \) is \(T_2 \) then \(Y \) is \(b-T_2 \).

Proof. (a) Let \(y_1 \) and \(y_2 \) be any distinct points in \(Y \). Then there exist \(x_1 \) and \(x_2 \) in \(X \) such that \(f(x_1) = y_1 \) and \(f(x_2) = y_2 \). Since \(X \) is \(T_1 \) there exist two open sets \(U \) and \(V \) in \(X \) with \(x_1 \in U \), \(x_2 \notin U \) and \(x_2 \in V \), \(x_1 \notin V \). Now \(f(U) \) and \(f(V) \) are \(b \)-open in \(Y \) with \(y_1 \in f(U) \), \(y_2 \notin f(U) \) and \(y_2 \in f(V) \), \(y_1 \notin f(V) \).

(b) Similar to (a). □

Definition 2.16. [3]. A space \(X \) is said to be \(b \)-compact (resp. \(b \)-Lindelöf) if every \(b \)-open cover of \(X \) has a finite (resp. countable) subcover.

Theorem 2.17. Let \(f : (X, \tau) \rightarrow (Y, \rho) \) be a \(b \)-open bijection. Then the following hold

a) If \(Y \) is \(b \)-compact, then \(X \) is compact.
b) If \(Y \) is \(b \)-Lindelöf, then \(X \) is Lindelöf.

Proof. (a) Let \(U = \{U_\alpha : \alpha \in \Delta \} \) be an open cover of \(X \). Then \(O = \{f(U_\alpha) : \alpha \in \Delta \} \) is a cover of \(Y \) by \(b \)-open sets in \(Y \). Since \(Y \) is \(b \)-compact, \(O \) has a finite subcover \(O' = \{f(U_{\alpha_1}), f(U_{\alpha_2}), ..., f(U_{\alpha_n})\} \) for \(Y \). Then \(U' = \{U_{\alpha_1}, U_{\alpha_2}, ..., U_{\alpha_n}\} \) is a finite subcover of \(U \) for \(X \).

(b) Similar to (a). □

Definition 2.18. [3]. A space \(X \) is said to be \(b \)-connected if it cannot be written as a union of two non-empty disjoint \(b \)-open sets.

Theorem 2.19. If \(f : (X, \tau) \rightarrow (Y, \rho) \) is a \(b \)-open surjection and \(Y \) is \(b \)-connected then \(X \) is connected.

Proof. Suppose that \(X \) is not connected. Then there exist two non-empty disjoint open sets \(U \) and \(V \) in \(X \) such that \(X = U \cup V \). Then \(f(U) \) and \(f(V) \) are non-empty disjoint \(b \)-open sets in \(Y \) with \(Y = f(U) \cup f(V) \) which contradicts the fact that \(Y \) is \(b \)-connected. □

3. Quasi \(b \)-Open and Quasi \(b \)-Closed Functions

Definition 3.1. A function \(f : (X, \tau) \rightarrow (Y, \rho) \) is said to be quasi \(b \)-open if \(f(U) \) is open in \(Y \) for every \(U \in BO(X) \).

Clearly, every quasi \(b \)-open function is \(b \)-open.
Definition 3.2. A subset A is called a b–neighborhood of a point x in X if there exists a b–open set U such that $x \in U \subseteq A$.

Theorem 3.3. Let $f : (X, \tau) \rightarrow (Y, \rho)$ be a function. then the following are equivalent:

1) f is quasi b–open.
2) For any subset A of X we have $f[bInt(A)] \subseteq Int[f(A)]$.
3) For any $x \in X$ and any b–neighborhood U of x, there exists a neighborhood V of $f(x)$ in Y such that $V \subseteq f(U)$.

Proof. (1) \Rightarrow (2). Let f be quasi b–open and $A \subseteq X$. Now we have $Int(A) \subseteq A$ and $bInt(A) \subseteq BO(X)$. Hence we obtain that $f[bInt(A)] \subseteq f(A)$. Since $f[bInt(A)]$ is open, $f[bInt(A)] \subseteq Int[f(A)]$.

(2) \Rightarrow (3). Let $x \in X$ and U be a b–neighborhood of x in X. Then there exists $V \in BO(X)$ such that $x \in V \subseteq U$. Then by (2), we have,

$$f(V) = f[bInt(V)] \subseteq Int[f(V)]$$

and hence $f(V) = Int[f(V)]$. Therefore $f(V)$ is open in Y such that $f(x) \in f(V) \subseteq f(U)$.

(3) \Rightarrow (1). Let $U \in BO(X)$. Then for each $y \in f(U)$, there exists a neighborhood V_y of y in Y such that $V_y \subseteq f(U)$. Since V_y is a neighborhood of y, there exists an open set W_y in Y such that $y \in W_y \subseteq V_y$. Thus, $f(U) = \bigcup \{W_y : y \in f(U)\}$ which is an open set in Y. This implies that f is quasi b–open function. \square

Theorem 3.4. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is quasi b–open if and only if $bInt[f^{-1}(B)] \subseteq f^{-1}[Int(B)]$ for every subset B of Y.

Proof. \Rightarrow). Let B be any subset of Y. Then, $bInt[f^{-1}(B)] \subseteq BO(X)$ and f is quasi b–open, then $f[bInt(f^{-1}(B))] \subseteq Int[f(f^{-1}(B))] \subseteq Int(B)$. Thus , $bInt[f^{-1}(B)] \subseteq f^{-1}[Int(B)]$.

\Leftarrow). Let $U \in BO(X)$. Then by assumption $bInt[f^{-1}(f(U))] \subseteq f^{-1}[Int(f(U))]$ then $bInt(U) \subseteq f^{-1}[Int(f(U))]$, but $bInt(U) = U$ so $U \subseteq f^{-1}[Int(f(U))]$ and hence $f(U) \subseteq Int(f(U))$ so f is quasi b–open. \square

Theorem 3.5. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is quasi b–open if and only if for any subset B of Y and for any set $C \in BC(X)$ containing $f^{-1}(B)$, there exists a closed subset F of Y containing $f^{-1}(F) \subseteq C$.

Proof. \Rightarrow). Let f be quasi b–open and $B \subseteq Y$. Let $C \in BC(X)$ with $f^{-1}(B) \subseteq C$. Now, put $F = Y - f(X - C)$. It is clear that since $f^{-1}(B) \subseteq C$, $B \subseteq F$. Since f is quasi b–open, F is a closed subset of Y. Also, we have $f^{-1}(F) \subseteq C$.

\Leftarrow). Let $U \in BO(X)$ and put $B = Y - f(U)$. Then $X - U \in BC(X)$ with $f^{-1}(B) \subseteq X - U$. By assumption, there exists a closed set F of Y such that $B \subseteq F$.
and $f^{-1}(F) \subseteq X - U$. Hence, we obtain $f(U) \subseteq Y - F$. On the other hand, it follows that $B \subseteq F$, $Y - F \subseteq Y - B = f(U)$. Thus, we have $f(U) = Y - F$ which is open and hence f is a quasi b–open function.

Theorem 3.6. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is quasi b–open if and only if $f^{-1}[Cl(B)] \subseteq bCl[f^{-1}(B)]$ for any subset B of Y.

Proof. \Rightarrow). Suppose that f is quasi b–open. For any subset B of Y, $f^{-1}(B) \subseteq bCl[f^{-1}(B)]$. Therefore by Theorem 3.5, there exists a closed set F in Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq bCl[f^{-1}(B)]$. Therefore, we obtain,

$$f^{-1}[Cl(B)] \subseteq f^{-1}(F) \subseteq bCl[f^{-1}(B)].$$

\Leftarrow). Let $B \subseteq Y$ and $C \in BC(X)$ with $f^{-1}(B) \subseteq C$. Put $F = Cl(B)$, then we have $B \subseteq F$ and F is closed and $f^{-1}(F) \subseteq bCl[f^{-1}(B)] \subseteq C$. Then by Theorem 3.5, the function f is quasi b–open.

Definition 3.7. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is said to be quasi b–closed if $f(C)$ is closed in Y for every $C \in BC(X)$.

Clearly, every quasi b–closed function is b–closed.

Theorem 3.8. If a function $f : (X, \tau) \rightarrow (Y, \rho)$ is quasi b–closed then $f^{-1}[Int(B)] \subseteq bInt[f^{-1}(B)]$ for every subset B of Y.

Proof. Similar to the proof of Theorem 3.4.

Theorem 3.9. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is quasi b–closed if and only if for any subset B of Y and for any $U \in BO(X)$ containing $f^{-1}(B)$, there exists an open subset V of Y containing B such that $f^{-1}(V) \subseteq U$.

Proof. Similar to the proof of Theorem 3.5.

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19, we can prove the following three theorems

Theorem 3.10. Let $f : (X, \tau) \rightarrow (Y, \rho)$ be a quasi b–open bijection. Then the following hold

a) If X is b–T_1 then Y is T_1.

b) If X is b–T_2 then Y is T_2.

Theorem 3.11. Let $f : (X, \tau) \rightarrow (Y, \rho)$ be a quasi b–open bijection. Then the following hold

a) If Y is compact, then X is b–compact.

b) If Y is Lindelöf, then X is b–Lindelöf.

Theorem 3.12. If $f : (X, \tau) \rightarrow (Y, \rho)$ is a quasi b–open surjection and Y is connected then X is b–connected.
4. **Strongly b–Open and Strongly b–Closed Functions**

Definition 4.1. A function \(f : (X, \tau) \to (Y, \rho) \) is said to be strongly b–open if \(f(U) \subseteq BO(Y) \) for every \(U \subseteq BO(X) \).

Clearly, every strongly b–open function is b–open.

Theorem 4.2. Let \(f : (X, \tau) \to (Y, \rho) \) and \(g : (Y, \rho) \to (Z, \sigma) \) be two strongly b–open functions. Then the composition function \(g \circ f : (X, \tau) \to (Z, \sigma) \) is strongly b–open.

Proof. Let \(U \subseteq BO(X) \). Then \(f(U) \subseteq BO(Y) \) since \(f \) is strongly b–open. But \(g \) is strongly b–open so \(g(f(U)) \subseteq BO(Z) \). Hence \(g \circ f \) is strongly b–open. \(\square \)

Theorem 4.3. A function \(f : (X, \tau) \to (Y, \rho) \) is strongly b–open if and only if for each \(x \in X \) and for any \(U \subseteq BO(X) \) with \(x \in U \), there exists \(V \subseteq BO(Y) \) such that \(f(x) \subseteq V \) and \(V \subseteq f(U) \).

Proof. It is obvious. \(\square \)

Theorem 4.4. A function \(f : (X, \tau) \to (Y, \rho) \) is strongly b–open if and only if for each \(x \in X \) and for any b–neighborhood \(U \) of \(x \) in \(X \), there exists a b–neighborhood \(V \) of \(f(x) \) in \(Y \) such that \(V \subseteq f(U) \).

Proof. \(\Rightarrow \). Let \(x \in X \) and let \(U \) be a b–neighborhood of \(x \). Then there exists \(W \subseteq BO(X) \) such that \(x \in W \subseteq U \). Then \(f(x) \subseteq f(W) \subseteq f(U) \). But, \(f(W) \subseteq BO(Y) \) since \(f \) is strongly b–open. Hence \(V = f(W) \) is a b–neighborhood of \(f(x) \) and \(V \subseteq f(U) \).

\(\Leftarrow \). Let \(U \subseteq BO(X) \) and \(x \in U \). Then \(U \) is a b–neighborhood of \(x \). So by assumption, there exists a b–neighborhood \(V_{f(x)} \) of \(f(x) \) such that, \(f(x) \subseteq V_{f(x)} \subseteq f(U) \). It follows that \(f(U) \) is a b–neighborhood of each of its points. Therefore, \(f(U) \subseteq BO(Y) \). Hence \(f \) is strongly b–open. \(\square \)

Theorem 4.5. A function \(f : (X, \tau) \to (Y, \rho) \) is strongly b–open if and only if \(f[bInt(A)] \subseteq bInt[f(A)] \), for every \(A \subseteq X \).

Proof. \(\Rightarrow \). Let \(A \subseteq X \) and \(x \in bInt(A) \). Then there exists \(U_x \subseteq BO(X) \) such that \(x \in U_x \subseteq A \). So \(f(x) \subseteq f(U_x) \subseteq f(A) \) and by assumption, \(f(U_x) \subseteq BO(Y) \). Hence, \(f(x) \subseteq bInt[f(A)] \). Thus \(f[bInt(A)] \subseteq bInt[f(A)] \).

\(\Leftarrow \). Let \(U \subseteq BO(X) \). Then by assumption, \(f[bInt(U)] \subseteq bInt[f(U)] \). Since \(bInt(U) = U \) and \(bInt[f(U)] \subseteq f(U) \). Hence, \(f(U) = bInt[f(U)] \). Thus, \(f(U) \subseteq BO(Y) \). \(\square \)

Theorem 4.6. A function \(f : (X, \tau) \to (Y, \rho) \) is strongly b–open if and only if \(bInt[f^{-1}(B)] \subseteq f^{-1}[bInt(B)] \), for every \(B \subseteq Y \).
Proof. \(\Rightarrow\). Let \(B \subseteq Y\). Since \(b\text{Int}[f^{-1}(B)] \subseteq BO(X)\) and \(f\) is strongly \(b\)–open, \(f[b\text{Int}(f^{-1}(B))] \subseteq BO(Y)\). Also we have \(f[b\text{Int}(f^{-1}(B))] \subseteq f[f^{-1}(B)] \subseteq B\). Hence, \(f[b\text{Int}(f^{-1}(B))] \subseteq b\text{Int}(B)\). Therefore, \(b\text{Int}[f^{-1}(B)] \subseteq f^{-1}[b\text{Int}(B)]\).

\((\Leftarrow)\). Let \(A \subseteq X\). Then \(f(A) \subseteq Y\). Hence by assumption, we obtain,

\[
b\text{Int}(A) \subseteq b\text{Int}[f^{-1}(f(A))] \subseteq f^{-1}[b\text{Int}(f(A))].
\]

This implies that,

\[
f[b\text{Int}(A)] \subseteq f[f^{-1}(b\text{Int}(f(A)))] \subseteq b\text{Int}[f(A)].
\]

Thus, \(f[b\text{Int}(A)] \subseteq b\text{Int}[f(A)]\), for all \(A \subseteq X\). Hence, by Theorem 4.5, \(f\) is strongly \(b\)–open.

\[\square\]

Theorem 4.7. A function \(f : (X, \tau) \to (Y, \rho)\) is strongly \(b\)–open if and only if
\[f^{-1}[b\text{Cl}(B)] \subseteq b\text{Cl}[f^{-1}(B)],\]
for every \(B \subseteq Y\).

Proof. \(\Rightarrow\). Let \(B \subseteq Y\) and \(x \in f^{-1}[b\text{Cl}(B)]\). Then \(f(x) \in b\text{Cl}(B)\). Let \(U \in BO(X)\) such that \(x \in U\). By assumption, \(f(U) \in BO(Y)\) and \(f(x) \in f(U)\). Thus \(f(U) \cap B \neq \emptyset\). Hence \(U \cap f^{-1}(B) \neq \emptyset\). Therefore, \(x \in b\text{Cl}[f^{-1}(B)]\). So we obtain \(f^{-1}[b\text{Cl}(B)] \subseteq b\text{Cl}[f^{-1}(B)]\).

\((\Leftarrow)\). Let \(B \subseteq Y\). Then \(Y - B \subseteq Y\). By assumption,

\[
f^{-1}[b\text{Cl}(Y - B)] \subseteq b\text{Cl}[f^{-1}(Y - B)].
\]

This implies that,

\[
X - b\text{Cl}[f^{-1}(Y - B)] \subseteq X - f^{-1}[b\text{Cl}(Y - B)].
\]

Hence,

\[
X - b\text{Cl}[X - f^{-1}(B)] \subseteq f^{-1}[Y - b\text{Cl}(Y - B)].
\]

Then, \(b\text{Int}[f^{-1}(B)] \subseteq f^{-1}[b\text{Int}(B)]\). Now by Theorem 4.6, it follows that \(f\) is strongly \(b\)–open.

\[\square\]

Definition 4.8. [3]. A function \(f : (X, \tau) \to (Y, \rho)\) is said to be \(b\)–irresolute if \(f^{-1}(V) \in BO(X)\) for every \(V \in BO(Y)\).

Theorem 4.9. Let \(f : (X, \tau) \to (Y, \rho)\) be a function and \(g : (Y, \rho) \to (Z, \sigma)\) be a strongly \(b\)–open injection. If \(gof : (X, \tau) \to (Z, \sigma)\) is \(b\)–irresolute, then \(f\) is \(b\)–irresolute.

Proof. Let \(U \in BO(Y)\). Then \(g(U) \in BO(Z)\) since \(g\) is strongly \(b\)–open. Also \(gof\) is \(b\)–irresolute, so we have \((gof)^{-1}[g(U)] \subseteq BO(X)\). Since \(g\) is an injection, we have \((gof)^{-1}[g(U)] = (f^{-1}og^{-1})[g(U)] = f^{-1}[g^{-1}(g(U))] = f^{-1}(U)\). Then, \(f^{-1}(U) \in BO(X)\). So \(f\) is \(b\)–irresolute.

\[\square\]
Theorem 4.10. Let \(f : (X, \tau) \to (Y, \rho) \) be strongly \(b \)– open surjection and \(g : (Y, \rho) \to (Z, \sigma) \) be any function. If \(gof : (X, \tau) \to (Z, \sigma) \) is \(b \)– irresolute, then \(g \) is \(b \)– irresolute.

Proof. Let \(V \in BO(Z) \). Then \((gof)^{-1}(V) \in BO(X) \) since \(gof \) is \(b \)– irresolute. Also \(f \) is strongly \(b \)– open, so \(f[(gof)^{-1}(V)] \in BO(Y) \). Since \(f \) is surjective, we note that \(f[(gof)^{-1}(V)] = [fo(gof)^{-1}](V) = [fo(f^{-1}og^{-1})](V) = [(fof^{-1})og^{-1}](V) = g^{-1}(V) \). Hence \(g \) is \(b \)– irresolute. \(\Box \)

Definition 4.11. A function \(f : (X, \tau) \to (Y, \rho) \) is said to be strongly \(b \)– closed if \(f(C) \in BC(Y) \) for every \(C \in BC(X) \).

The straightforward proof of the following theorem is omitted.

Theorem 4.12. If \(f : (X, \tau) \to (Y, \rho) \) and \(g : (Y, \rho) \to (Z, \sigma) \) are two strongly \(b \)– closed functions, then \(gof : (X, \tau) \to (Z, \sigma) \) is a strongly \(b \)– closed function.

Theorem 4.13. Let \(f : (X, \tau) \to (Y, \rho) \) and \(g : (Y, \rho) \to (Z, \sigma) \) be two functions such that \(gof : (X, \tau) \to (Z, \sigma) \) is a strongly \(b \)– closed function. Then

1) If \(f \) is \(b \)– irresolute and surjection then \(g \) is strongly \(b \)– closed.

2) If \(g \) is \(b \)– irresolute and injection, then \(f \) is strongly \(b \)– closed.

Proof. (1). Let \(F \in BC(Y) \). Since \(f \) is \(b \)– irresolute, \(f^{-1}(F) \in BC(X) \). Now \(gof \) is strongly \(b \)– closed and \(f \) is surjection, then \((gof)(f^{-1}(F)) = g(F) \in BC(Z) \). This implies that \(g \) is strongly \(b \)– closed.

(2). Let \(C \in BC(X) \). Since \(gof \) is strongly \(b \)– closed, \((gof)(C) \in BC(Z) \). Now \(g \) is \(b \)– irresolute and injection, so \(g^{-1}[(gof)(C)] = f(C) \in BC(Y) \). This shows that \(f \) is strongly \(b \)– closed. \(\Box \)

Theorem 4.14. A function \(f : (X, \tau) \to (Y, \rho) \) is strongly \(b \)– closed if and only if \(bCl[f(A)] \subseteq f[bCl(A)] \), for every \(A \subseteq X \).

Proof. \(\Rightarrow \). Let \(f \) be strongly \(b \)– closed and \(A \subseteq X \). Then \(f[bCl(A)] \in BC(Y) \). Since \(f(A) \subseteq f[bCl(A)] \), we obtain \(bCl[f(A)] \subseteq f[bCl(A)] \).

\(\Leftarrow \). Let \(C \in BC(X) \). By assumption, we obtain, \(f(C) \subseteq bCl[f(C)] \subseteq f[bCl(C)] = f(C) \).

Hence \(f(C) = bCl[f(C)] \). Thus, \(f(C) \in BC(Y) \). It follows that \(f \) is strongly \(b \)– closed. \(\Box \)

Theorem 4.15. Let \(f : (X, \tau) \to (Y, \rho) \) be a function such that \(Int[Cl(f(A))] \subseteq f[bCl(A)] \) for every \(A \subseteq X \). Then \(f \) is strongly \(b \)– closed.
Proof. Let $C \in BC(X)$. Then by assumption we have,

$$Int[Cl(f(C))] \subseteq f[bCl(C)] = f(C).$$

Put $F = Cl[f(C)]$. Then F is closed in Y. Also it implies that $Int(F) \subseteq f(C) \subseteq F$. Hence, $f(C)$ is semi closed in Y. Since $SO(Y) \subseteq BO(Y)$, $f(C) \in BC(Y)$. This implies that f is strongly b–closed.

Theorem 4.16. Let $f : (X, \tau) \to (Y, \rho)$ be a strongly b–closed function and $B \subseteq Y$. If $U \in BO(X)$ with $f^{-1}(B) \subseteq U$, then there exists $V \in BO(Y)$ with $B \subseteq V$ such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

Proof. Let $V = Y - f(X - U)$. Then $Y - V = f(X - U)$. Since f is strongly b–closed, $V \in BO(Y)$. Since $f^{-1}(B) \subseteq U$, we have $Y - V = f(X - U) \subseteq f[f^{-1}(Y - B)] \subseteq Y - B$. Hence, $B \subseteq V$. Also $X - U \subseteq f^{-1}[f(X - U)] = f^{-1}(Y - V) = X - f^{-1}(V)$. So $f^{-1}(V) \subseteq U$.

Theorem 4.17. Let $f : (X, \tau) \to (Y, \rho)$ be a surjective strongly b–closed function and $B, C \subseteq Y$. If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint b–neighborhoods, then so have B and C.

Proof. Let E and F be the disjoint b–neighborhood of $f^{-1}(B)$ and $f^{-1}(C)$ respectively. Then by the last theorem There exist two sets $U, V \in BO(Y)$ with $B \subseteq U$ and $C \subseteq V$ such that $f^{-1}(B) \subseteq f^{-1}(U) \subseteq bInt(E)$ and $f^{-1}(C) \subseteq f^{-1}(V) \subseteq bInt(F)$. Since E and F are disjoint, so are $bInt(E)$ and $bInt(F)$, and hence so $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint as well. It follows that U and V are disjoint too since f is a surjective function.

Theorem 4.18. A surjective function $f : (X, \tau) \to (Y, \rho)$ is strongly b–closed if and only if for each subset B of Y and each set $U \in BO(X)$ containing $f^{-1}(B)$, there exists a set $V \in BO(Y)$ containing B, such that $f^{-1}(V) \subseteq U$.

Proof. \Rightarrow. This follows from Theorem 4.16.

\Leftarrow. Let $C \in BC(X)$ and $y \in Y - f(C)$. Then $f^{-1}(y) \subseteq X - f^{-1}(f(C)) \subseteq X - C$ and $X - C \in BO(X)$. Hence by assumption, there exists a set $V_y \in BO(Y)$ containing y such that $f^{-1}(V_y) \subseteq X - C$. This implies that $y \in V_y \subseteq Y - f(C)$. Thus, $Y - f(C) = \bigcup\{V_y : y \in Y - f(C)\}$. Hence, $Y - f(C) \in BO(Y)$. Therefore, $f(C) \in BC(Y)$.

Theorem 4.19. Let $f : (X, \tau) \to (Y, \rho)$ be a bijection. Then the following are equivalent:

1) f is strongly b–closed.
2) f is strongly b–open.
3) f^{-1} is b–irresolute.
Proof. (1) \rightarrow (2). Let $U \in BO(X)$. Then $X - U \in BC(X)$. By (1),
$f(X - U) \in BC(Y)$. But $f(X - U) = f(X) - f(U) = Y - f(U)$. Thus $f(U) \in BO(Y)$.

(2) \rightarrow (3). Let $A \subseteq X$. Since f is strongly b-open, so by Theorem 4.7,
$f^{-1}[bCl(f(A))] \subseteq bCl[f^{-1}(f(A))]$. It implies that $bCl[f(A)] \subseteq f[bCl(A)]$. Thus
$bCl[(f^{-1})^{-1}(A)] \subseteq (f^{-1})^{-1}[bCl(A)]$, for all $A \subseteq X$. Then, it follows that f^{-1} is b-irresolute.

(3) \rightarrow (1). Let $C \in BC(X)$. Then $X - C \in BO(X)$. Since f^{-1} is b-irresolute,
$(f^{-1})^{-1}(X - C) \in BO(Y)$. But $(f^{-1})^{-1}(X - C) = f(X - C) = Y - f(C)$. Thus
$f(C) \in BC(Y)$.

□

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19 we can prove the following three theorems

Theorem 4.20. Let $f : (X, \tau) \rightarrow (Y, \rho)$ be a strongly b-open bijection. Then the following hold

a) If X is $b-T_1$ then Y is $b-T_1$.
b) If X is $b-T_2$ then Y is $b-T_2$.

Theorem 4.21. Let $f : (X, \tau) \rightarrow (Y, \rho)$ be a strongly b-open bijection. Then the following hold

a) If Y is b-compact, then X is b-compact.
b) If Y is b-Lindelöf, then X is b-Lindelöf.

Theorem 4.22. If $f : (X, \tau) \rightarrow (Y, \rho)$ is a strongly b-open surjection and Y is b-connected then X is b-connected.

References

Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095, Mafraq, Jordan

E-mail address: jjmmrr971@yahoo.com