JJES » JJES Issues
 
 Yarmouk Journals
Home
Editorial Board
Consulative Board
Manuscript Submission
Publication Guidelines
JJES Issues  
Contact Address
 

 

أثر استخدام المحاكاة الحاسوبية والعروض العملية في اكتساب المفاهيم والكفاءة الذاتية في تعلم ‏الفيزياء

علي العمري

جامعة اليرموك، الأردن

Doi://10.47015/16.4.7                          

JJES,16(4), 2020, 505-517

 

ملخص: هدفت الدراسة الحالية إلى التعرف إلى أثر استخدام المحاكاة الحاسوبية والعروض العملية في اكتساب المفاهيم الفيزيائية والكفاءة الذاتية في تعلم الفيزياء. أجريت الدراسة على طالبات الصف الحادي عشر العلمي، وتألفت عينة الدراسة من (61) طالبة وزعت في مجموعتين؛ المجموعة الأولى (31) طالبة درست باستخدام المحاكاة الحاسوبية، والمجموعة الثانية (30) طالبة درست باستخدام العروض العملية، واستغرقت عملية التطبيق إحدى عشرة حصة صفية لكل مجموعة. ولتحقيق أهداف الدراسة، أعد اختبار لقياس اكتساب مفاهيم الأمواج والحركة الاهتزازية، ومقياس للكفاءة الذاتية في تعلم الفيزياء. وأظهرت نتائج الدراسة عدم وجود فرق ذي دلالة إحصائية بين الوسطين الحسابيين لاستجابات أفراد العينة في القياس البعدي على اختبار اكتساب مفهوم الأمواج والحركة الاهتزازية ككل وأبعاده (مفهوم الموجة، وخصائص الأمواج، والحركة التوافقية البسيطة)، يعزى إلى استراتيجية التدريس. كما أظهرت النتائج عدم وجود فرق ذي دلالة إحصائية في الكفاءة الذاتية في تعلم الفيزياء بين مجموعتي المحاكاة الحاسوبية والعروض العملية. ‏


‏ (الكلمات المفتاحية:
المحاكاة الحاسوبية، العروض العملية، اكتساب المفاهيم، الكفاءة الذاتية، تعلم الفيزياء)‏


 

The Effect of Computer Simulation and Practical Demonstration in Acquiring Physics Concepts and Self-Efficacy in Learning Physics

Ali  Al-Omri, Yarmouk University, Jordant

Abstract:

This study aimed at identifying the effect of computer simulation and practical demonstration in acquiring physics concepts and self-efficacy in learning physics. The study was conducted on 11th grade female students. The research sample consisted of (61) students, divided into two groups; the first group (n=31) was taught using computer simulation, whereas the second group (n=30) was taught using practical demonstration, and the implementation process took eleven classes for each group. To achieve the aims of the study, a physics concept test and self-efficacy questionnaire were prepared. The results of the study showed no statistically significant difference between the mean scores of the two groups in the post-test of the acquisition of waves and vibration motion concept as a whole and its dimensions (wave concept, wave characteristics and simple harmonic motion) due to the instructional strategy. Furthermore, the results showed no statistically significant difference in self-efficacy in learning physics between the two groups of computer simulation and practical presentation.

(Keywords: Computer Simulation, Practical Demonstration, Concept Acquisiition, Self-Efficay, Physics Learning)

 

References

 

Abu Jahjouh, Y. (2013). Nature of physics science and its relation to teaching methods among secondary school physics teachers. Al-Aqsa University Journal (Human Sciences), 17(2), 177-217.

Adegoke, B. (2013). Improving students' learning outcomes in practical physics: Which is better? Computer simulated experiment or hands-on experiment? Journal of Research & Method in Education (ISOR-JRME), 2(6), 18-26.

Ajredini, F., Izairi, N. & Zajkov, O. (2014). Real experiment versus Phet simulation for better high-school students' understanding of electrostatic charging. European Journal of Physics Education, 5(1), 59-70.

Al-Alwan, A. & Mahasneh, R. (2011). Reading self-efficacy and its relation to the use of reading strategies among a sample of Hashemite University students. Jordan Journal of Educational Sciences, 7(4), 399-418.

Al-Deek, S. (2010). The impact of computer simulation to achieve immediate and deferred eleventh-gradestudents and their attitudes towards the unit mechanics and mentor. Master Thesis, Al-Najah University, Palestine.

Al-Far, I. (2004). Computer education and the challenges of the 21st century. Cairo: Dar Elfikr Elarabi.

Al-Ghashm, K. (2009). The effects of teaching physics using the methods of direct practical demonstration and exposition through computer-aided simulation in achievement of secondary students. Master Thesis, Sana'a University, Yemen.

Ali, M. (2003). Scientific education and science teaching. Amman: Dar Almasirah for Publishing & Distribution.

Al-Kaleely, K., Haider, A. & Yunos, M. (1996). Teaching science in general education stages. United Arab Emirates: Dar Al Kalam for Publishing & Distribution.

Al-Mamari, R. (2014). The impact of teaching physics by using computer simulation on correcting the misconceptions among the eleventh-grade students in the Sultanate of Oman. Master Thesis, Yarmouk University. Jordan.

Al-Masoudi, A. & Al-Mazroui, H. (2014). Effectiveness of an inquiry-based computer simulation in developing secondary school. Dirasat (Educational Sciences), 41(2), 173-190.

Al-Mzidi, N. & Al-Shuaili, A. (2017). Identifying the impact of using simulation programs on acquiring physics concepts for female students in grade 11. Journal of Educational and Psychological Studies, 11(2), 390-406.

Al-Nawashy, K. (2010). The use of ICTs in education. Amman: Dar Al Thaqafa for Publishing & Distribution.

Al-Omari, A. & Bawaneh, A. (2019). Misconceptions in the subject of force and motion among physics students. Dirasat (Educational Sciences), 46(3), 1-18.

Al-Otoum, A., Alawneh, S., Al-Jarah, A. & Abu Gazal, M. (2005). Educational psychology: Theory and practice. Amman: Dar Almasirah.


 

Al-Shaya, F. & Al-Qadere, S. (2012). The epistemological perceptions of learning physics concepts amongst faculty members and students in the physics faculty members at some Saudi and Jordanian universities. Journal of Educational Sciences, 24(1), 285-310.

Al-Sum, A. (2009). The effect of using computer simulation to develop physics problems-solving skills for second-class students in secondary schools and their attitudes towards physics. Master Thesis, Sana'a University, Yemen.

Ambu Saeedy, A., Alblooshy, S. & Al Shuaili, A. (2013). Alternative conceptions in science: your guide to correct them. Sultan Qaboos University Press, Oman.

American Association for the Advancement of Science "AAAS”. (1993). Benchmarks for science literacy. New York: Oxford Univer-sity Press.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman.                                

Ding, Y. & Fang, H. (2009). Using a simulation laboratory to improve physics learning: A case exploratory learning of diffraction grating. First International Workshop on Education Technology and Computer Science, 3, 3-6.

El Aisawi, T. (2008). The effect of constructive "V" shape strategy on scientific concepts and learning processes acquisition by seventh- grade students in Gaza. Master Thesis, Islamic University, Gaza.

Finkelstein, N., Adams, W., Keller, C., Kohl, P., Perkins, N., Podolefsky, N. & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting compu-ter simulations for laboratory equipment. Physical Review Special Topics-Physics Education Research, 1(1), 1-8.

Hofstein, A., & Lunetta, V. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54.

Juhani, A. (2012). The impact of computer simulation on the development of some science processes in physics curriculum in first-grade secondary students in al-Madinah al- Munawarah. Master Thesis, Taibah Univer-sity, Saudi Arabia.

Kataybeh, A. (2008). Teaching science for all. Amman: Dar Almasirah for Publishing & Distribution.

Khourey-Bowers, C. (2011). Active learning strategies: Top 10. The Science Teacher, 5(11), 39-42.

Kotamy, Y. (2004). Social cognitive theory and its applications. Amman: Dar Al Fikr Publishers and Distributers.

Kotiat, G. (2011). Teaching computing. Amman: Dar Al Thaqafa for Publishing & Distribution.

Mashaqbeh, T. (2014). The effect of teaching science using self-regulated skills on the acquisition of concepts and self-efficacy by 7th grade students. Master Thesis, Al-Bayt University, Jordan.

Ministry of Education. (2013). Framework: General and spatial outcomes of science. Amman, Jordan.

Moghrapi, R. (2008). Academic self-efficacy among basic stage science teachers and its relationship with their students' self-efficacy and their science achievement. Ph.D Dissertation, The University of Jordan, Jordan.

National Science Teacher Association "NSTA". (1995). A high-school framework for national science education standards. Scope, Sequence and Coordination of Secondary School Science, Vol. 3, Washington, D.C. NSTA.

Obaidi, A. (2018). The effectiveness of using Thomas and Robinson (PQ4R) strategy in the acquisition of physical concepts and level of self-efficacy among 11th grade students. Master Thesis, Yarmouk University, Jordan.

Olympiou, G. & Zacharia, C. (2018). Students' actions while experimenting with blended combination of physical manipulation and virtual manipulation in physics. (In: Research on e-learning and ICT Education). Retrieved from: http://doi.org/10.1007/978-3-319-95059 -4.

Pintrich, P. & De Groot, E. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40.

Renken, D. & Nunes, N. (2013). Computer simulation and clear observation do not guarantee conceptual understanding. Learning and Instruction, 23, 10-23.

Sabry, M., Hagag, A. & Al-Baaly, I. (2016). The effectiveness of using mind maps in the acquisition of scientific concepts among first-grade preparatory stage pupils. Journal of Arabic Research in Qualitative Education- Association of Arab Educators, 3, 153-178.

Serway, R. & Beichner, R. (2000). Physics for scientists and engineers. Orlando: Harcourt College Publishers.

Shunk, D. (2012). Learning theories and educational perspective. Boston: Pearson Education, Inc.

Triona, L. & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary-school students’ ability to design experiments. Cognition and Instruction, 21(2), 149-173.

Zacharia, Z. & Constantinou, C. (2008). Comparing the influence of physical and virtual manipulatives in the context of the physics by inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76(4&5), 425-430.

Zacharia, Z. & Anderson, O. (2003). The effects of interactive computer-based simulation prior to performing a laboratory inquiry-based experi-ment on students' conceptual understanding of physics. American Journal of Physics, 71(6), 618-629.

 Zacharia, Z. & de Jong, A. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and Instruction, 32(2), 101-158.

Zacharia, Z., Olympiou, G. & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding of heat and temperature. Journal of Research in Science Teaching, 45(9), 1021-1035.

Zacharia, Z. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students' conceptual understanding of electric circuits. Journal of Computer-assisted Learning, 23(2), 120-132.

Zollman, D. (1997). From concrete to abstract: How video can help. Proceedings of the Conference on the Introductory Physics Course. New York: J. Wilson.

Zaitoon, A. (2013). Methods of teaching science. Amman: Dar Al-Shorouk for Publishing & Distribution.