JJES » JJES Issues
 
 Yarmouk Journals
Home
Editorial Board
Consulative Board
Manuscript Submission
Publication Guidelines
JJES Issues  
Contact Address
 

 

فاعلية التعلم القائم على تحليل الأخطاء الرياضية في تحسين القدرة على التفكير ما وراء المعرفي لدى طلاب الصف السابع الأساسي

                                     علي البركات* و أمل خصاونه** و سليمان المحمود***        

‏* جامعة الشارقة، الإمارات العربية المتحدة.‏
‏** جامعة اليرموك، الأردن.‏
‏*** وزارة التربية والتعليم، الأردن.‏
 

Doi://10.47015/18.2.6 

JJES,18(2), 2022, 303-317

ملخص: سعت الدراسة الحالية إلى تقصّي فاعلية التعلم القائم على تحليل الأخطاء الرياضية في تحسين القدرة على التفكير ما وراء المعرفي لدى طلاب الصف السابع الأساسي في الأردن. ولتحقيق غرض الدراسة، تم إعداد سلسلة من الأنشطة التعليمية-التعلمية القائمة على تحليل الأخطاء الرياضية في وحدة التناسب الواردة في كتاب الرياضيات للصف السابع الأساسي. وجمعت بيانات الدراسة باستخدام مقياس في التفكير ما وراء المعرفي بعد التأكد من صدقه وثباته. وتم اختيار عينة متيسّرة مكونة من شعبتين من شعب طلاب الصف السابع البالغ عددهم 45 طالبًا ، وتم اختيار إحدى الشعبيتين بالتعيين العشوائي كمجموعة تجريبية تألفت من (24) طالبًا تم تدريسهم من خلال التعلم القائم على تحليل الأخطاء الرياضية، وتم تعيين الشعبة الأخرى كمجموعة ضابطة تألفت من (21) طالبًا تم تدريسهم بالطريقة الاعتيادية. وأظهرت نتائج الدراسة أن التعلم القائم على تحليل الأخطاء الرياضية أسهم بشكل كبير في تحسين القدرة على التفكير ما وراء المعرفي لدى طلاب الصف السابع الأساسي، حيث بينت النتائج وجود فروق دالة إحصائيًا بين درجات تقدير المجموعتين التجريبية والضابطة على مقياس التفكير ما وراء المعرفي لصالح المجموعة التجريبية. وهذا يقدم مؤشرًا على أن التعلم القائم على تحليل الأخطاء الرياضية يسهم إيجابًا في تحسين مهارات التفكير ما وراء المعرفي. وفي ضوء هذه النتائج، قدمت الدراسة مجموعة من التوصيات للباحثين التربويين، ولمصممي مناهج الرياضيات، ولمعلمي الرياضيات.

(الكلمات المفتاحية: التفكير ما وراء المعرفي، الأخطاء الرياضية، التعلم القائم على تحليل الأخطاء)

 

The Effectiveness of Learning Based on the ‎Analysis of Mathematical Errors in ‎Improving Metacognitive Thinking Ability ‎among Seventh-grade Students
 

Ali Al-Barakat,  Sharja University, United Arab Emarat.  

Amal Khasawneh,  Yarmouk University,Jordan. 

Suleiman Al-Mahmoud,  Ministry of Education, Jordan. 

Abstract: The present study investigated the effectiveness of learning based on the analysis of mathematical errors in improving metacognitive thinking among seventh-grade students. To achieve the aim of the study, a set of learning activities was prepared in light of learning based on analyzing mathematical errors. Data of the study was gathered using a metacognitive-thinking scale, after ensuring its validity and reliability. The sample of the study consisted of forty five students. It was divided into two groups: the experimental group (n=24) was taught based on the analysis of mathematical errors, while the control group (n=21) was taught through the traditional method (without using learning based on error analysis). The results of the study showed significant differences in improving the skills of metacognitive thinking between the two groups. These differences were in favor of the subjects of the experimental group, which was taught mathematics based on analyzing mathematical errors. This indicates that mathematics learning through analyzing mathematical errors contributes positively to improving the skills of metacognitive thinking. In light of these results, the study suggested a set of recommendations for educational researchers, mathematics curriculum designers and mathematics teachers.

(Keywords: Metacognitive Thinking, Mathematical Errors, Learning Based on Error Analysis).

 

References

Alzahrani, A. (2017). Metacognition and its role in mathematics learning: An exploration of the perceptions of a teacher and students in a secondary school. International Electronic Journal of Mathematics Education, 12(3), 521-537.

Barlow, A., Watson, L., Tessema, A., Lischka, A., & Strayer, J. (2018). Inspection worthy mistakes. Teaching Children Mathematics, 24(6), 384–391.

Ben-Hur, M. (2006). Concept -rich mathematics instruction. Association for Supervision and Curriculum Development ASCD, USA.

Borasi, Raffella. (1987). Exploring mathematics through the analysis of errors. For the Learning of Mathematics, 7(3), 2–8.

Brown, Ann. (1978). Knowing when, where and how to remember: A problem of metacognition. In: Glaser, R. (Ed). Advances in Instructional Psychology. Hillsdale, NJ: Lawrence Erlbaum Associates. Retrieved 20June 2020 from: http://www.eric.ed.gov/ PDFS/ED146562.pdf.

Chai, K. (2015). The principles and ways of classroom interaction, International Conference on Arts, Design and Contemporary Education (ICADCE 2015) , 844-847.

Costa, L., & Kallick, B. (2001).What are habits of mind ? Retrieved on 23 December 2019 from: http//www.habits of mind.

Flavell, John. (1978). Metacognitive ddevelopment. In Scandura, J., & Brainerd, C. (Eds.), Structural/process theories of complex human behavior, 213–245. Alphenaan den Rijn: Sijthoff and Noordhoff.

Flavell, John. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911.

Gartmeier, M., Bauer, J. Gruber, H., & Heid, H. (2008). Negative knowledge: Understanding professional learning and expertise. Vocations and Learning, 1, 87 – 103.

Gregor, D.(2007). Developing thinking- Developing leading: A guide to thinking skills in education. Retrieved on 23 December 2019 from: https://docs.lib.purdue.edu/cgi/viewcon-tent.cgi?article=1674&context=ijpbl.

Henrich, A. (2017). I am so glad you made that mistake. American Mathematical Society (AMS). https://blogs.ams.org/matheducation/ 2017/05/01/i-am-so-glad-you-made-that-mistake/

Kramarski, B., & Zoldan, S. (2008).Using errors as springboards for enhancing mathematical reasoning with three metacognitive approaches. The Journal of Educational Research, 102(2), 137–151.

Krulik, S., & Rudnick, J. (1999). Innovative tasks to improve critical-and creative thinking-skills. In: Lee, V., Stiff, G., & Francis R. Curcio (Eds.). Developing mathematical reasoning in grades K-12 (pp.138-145). Reston, Virginia: The National Council of Teachers of Mathematics.

Lischka, N., Gerstenschlager, N., Stephens, C., Strayer, J., & Barlow, A. (2018). Making room for inspecting mistakes. Mathematics Teacher, 111(6), 432–439.

Livingston, Jennifer. (2003). Metacognition: An overview. Eric ED, 474273.

Mallue, Tyler. (2015). What is error analysis, and how can it be used in a mathematics classroom?. Retrieved in June 2020 from: https://press.utoledo.edu/index.php/learningtoteach/article/view/259.

Melis, Erica. (2004). Erroneous examples as a source of learning in mathematics. Proceedings of the (IADIS) International Conference, Lisbon, Portugal, 311–318.

Metcalfe, Janet. (2016). Learning from Errors. Annu. Rev. Psychol, (ARP), 68(6), 1–25.

Monthienvichienchai, R., & Melis, E. (2006). Implementing courseware to support learning through real-world erroneous examples: students’ perceptions of tertiary courseware and obstacles to implementing effective delivery through VLE. The Electronic Journal of e-Learning, 4(1), 49–58.

 

National Center for Excellence in Teaching Mathematics (NCETM). (2020). Mathematics guidance: Key stages 1 and 2-Non-statutory guidance for the national curriculum in England. England: NCETM.

Nesher, Pearla. (1987). Towards an instructional theory: The role of student's misconceptions. For the Learning of Mathematics, 7(3), 33–40.

Parviainen, Jaana. (2006). Negative knowledge, expertise and organizations. Int. J. Management Concepts and Philosophy, 2(2), 140–153.

Perry, J., Lundie, D., & Golder, G. (2019). Metacognition in schools: What does the literature suggest about the effectiveness of teaching metacognition in schools? Journal of Educational Review, 71(4), 483-500.

Priyani, H, & Ekawati, R. (2018). Error analysis of mathematical problems on TIMSS: A case of Indonesian secondary students. The Consortium of Asia-Pacific Education Universities (CAPEU), 296, 1–6.

Rushton, S. (2018). Teaching and learning mathematics through error analysis. Fields Mathematics Education Journal, 3(4), 1–12.

Sanacore, Joseph. (1984). Metacognition and the improvement of reading: some important links. Journal of Reading, 27(8), 706–712.

Schraw, G., & Dennison, R. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19, 460–475.

 

 

 

 

 

 

 

 

 

 

 

 

Siswono, T. (2011). Level of student’s creative thinking in classroom mathematics. Educational Research and Review, 6(7), 548-553.

Sriraman, B. (2004). The characteristics of mathematical creativity. International Journal on Mathematics Education, 41(1), 13-27.

Sternberg, R. (1999) The nature of mathematical reasoning. In: Stiff, L. (Ed). Developing mathematical reasoning in grades K-12. National Council of Teachers of Mathematics, Reston, VA.

Veenman, M., Wilhelm, P., & Beishuizen, J. (2004). The relation between intellectual and metacognitive skills from a developmental perspective. Learning and Instruction, 14, 89–109.

Wang, M., Haertel, G., & Walberg, H. (1990). What influences learning? A content analysis of review literature. The Journal of Educational Research, 84, 30–43.

Wilen, W., & Phillips, J. (1995). Teaching critical thinking: A metacognitive approach. Social Education, 59(3), 135–138.

Willingham, J., Strayer, J., Barlow, A., & Lischka, A. (2018). Examining mistakes to shift student thinking. Mathematics Teaching in the Middle School, 23(6), 324–332.

Yore, L., Craig, M., & Maguire, T. (1998). Index of science reading awareness: An interactive-constructive model, test verification and grades (4–8) results. Journal of Research in Science Teaching, 1(35), 27–51.

.

.