Effect of ZrO$_2$ Nanofiller on the Physical Properties of Epoxy Composites: Mechanical, Thermal and Dielectric

N. Annlin Bezya, A. Lesly Fathimab, S. Sebastiammalb and S. Virgin Jebab

a Research Scholar (Reg.No:20213042132006), Department of Physics, Holy Cross College (Autonomous), Nagercoil-629004, Tamil Nadu, India.

b Research Department of Physics, Holy Cross College (Autonomous), Nagercoil-629004, Tamil Nadu, India.

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India).

Abstract: In this present work, Zirconia nanoparticles were prepared by precipitation method, Zirconium Oxychloride (ZrOCl$_2$.8H$_2$O) and ammonia (NH$_3$) as starting materials. The synthesized Zirconia nanoparticles were characterized by XRD and the grain size in nanoscale was confirmed. The sheets of neat epoxy resin and epoxy with addition of ZrO$_2$ nanoparticles are primed by solution casting method. The structure of epoxy polymer and hardener were found out using FTIR analysis. The thermal properties were analyzed using Thermo Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA). Thermo gravimetric analysis has been employed to investigate the thermal characteristics and their mode of thermal degradation. Differential thermal analysis has been used to determine the glass transition temperature of epoxy nanocomposites. The mechanical properties like tensile and flexural studies were analyzed and thus influences of nanofiller loading on these parameters were found to be very low.

Keywords: Epoxy, ZrO$_2$ Nanoparticles, Nanocomposites, Thermal stability, Dielectric properties, Tensile strength, Flexural strength.

Introduction

Polymer nanocomposites have attracted increasing attention in the last decade because of their significant improvement of physical and chemical properties over the matrix polymers. The effects of nanofillers on these properties have been extensively observed to make this nanocomposite for application purpose. The addition of just a few percent by weight of nanofillers can result in significant enhancement in dielectric, thermal, and mechanical properties. The incorporation of metal oxide nanoparticles with polymer is approached to improve the mechanical strength [1–6]. The effects of inorganic fillers on properties of the composites strongly depend on filler size and shape, type of particles, and the degree of dispersion [7-8]. Various nanoscale fillers, including metal oxides, montmorillonite, and calcium carbonate have been reported to enhance the mechanical properties, thermal stability, gas barrier properties, electrical properties, and flame retardancy of the polymer matrix [9-11]. Among various metal oxide fillers, nano-sized zinc oxide (ZnO), zirconium oxide(ZrO$_2$), titanium dioxide (TiO$_2$) and cerium oxide (CeO$_2$) fillers have attracted considerable attention because of the unique physical properties as well as their low cost and extensive applications in diverse areas [12-15]. Here the purpose of study is to evaluate the physical properties of epoxy resin with Zirconia nanoparticles.
Experimental Part

X-Ray Diffraction

X-ray diffraction (XRD) was a spectroscopic method which has been used in the structure determination of crystalline materials. X-ray diffraction (XRD) of ZrO₂ nanoparticles were carried out on a XPERT – PRO diffractometer system with monochromated CuKα (1.5406 Å) radiation working at 40 kV/30 mA. The grain size of ZrO₂ was calculated by Debye Scherrer formula

\[D = \frac{K \lambda}{\beta \cos \theta} \]

Where:
- \(K \) is a constant
- \(\lambda \) is the wave length used
- \(\beta \) is the full width half maximum
- \(\theta \) is the angle of diffraction

Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared spectroscopy is used identify organic, polymeric, and in some cases inorganic materials. The FTIR analysis method uses infrared light to scan test samples and observe chemical properties. FTIR measurements for the samples were performed in SHIMADZU type IR Affinity-spectrophotometer in the range of 4000 – 400 cm⁻¹. The mode used in the FTIR characterization is transmission.

Thermal Analysis

The thermal properties were analyzed using differential scanning calorimetry and thermogravimetric analysis. Thermal stability of the nanocomposites was studied using thermogravimetric analysis (TGA) in SIINT 6300 thermogravimetric analyzer temperature ranges from 25°C to 1000°C with the heating rate of 10°C/min. Powder sample is used for thermal analysis.

Electrical Analysis

Dielectric spectroscopy was based on the phenomena of electrical polarization and electrical conduction in materials. The most common mechanisms of polarization will occur at high frequencies (10⁴ Hz - 10¹⁵ Hz), while at very low frequencies (10⁻³ Hz – 10⁵ Hz), DC conduction will become significant. Thus dielectric spectroscopy was also well suited for the determination of both AC and DC conductivity of materials. In order to understand the influence of ZrO₂ on the dielectric property of the composites, the permittivity and dissipation factor of the composites were investigated. In the present work, the dielectric spectroscopy (DS) using the instrument HIOKI 3532-50 LCR Hitester, over a frequency range 10¹ – 10⁶ Hz, at three temperatures 50°C, 100°C and 150°C were found. For testing, the sample was cut into the dimension of 7.5 X 6 X 4 mm. The applied voltage was set to 1V and during all the measurements, room temperature was maintained.

Mechanical Analysis

Tensile test and Flexural strength of developed sheets are performed using mechanical analyzer in tensile mode in accordance with the ASTM D-638 test standard, Flexural mode with ASTM D-790 test standard respectively. Before testing, the rectangular samples of fixed size are cut out from sheet using a clean razor blade and the upper side of cut sample for tensile test is polished to make flat surface. And the edges of the sample are polished by sand paper of a mesh of 1200. ASTM D-638 is a testing specification that determines the in-plane tensile properties of polymer matrix composite materials reinforced by high-modulus fibres. A tensile test measures the resistance of a material to a static or slowly applied force. ASTM D 790 is a method of measuring the flexural properties of a plastic by setting a test bar across two supports and pushing down in the middle until it breaks or bends a specified distance. Flexural modulus is a measure of stiffness or rigidity.

Materials and Method

Materials

Zirconium oxychloride (ZrOCl₂.8H₂O) and ammonia (NH₃) purchased from Sigma Aldrich were used as starting materials for the synthesis ZrO₂ nanoparticles. ARALDITE Epoxy resin (LY 556) and hardener (HY 951) were taken as the material for the development of polymer sheets.

Synthesis of ZrO₂ Nanoparticle

The ZrO₂ nanoparticles were prepared by the precipitation method. Zirconium hydroxide precipitation (Zr (OH)₄) was obtained by adding NH₃ solution drop-wise into the aqueous solution
of 0.2M ZrOCl$_2$.8H$_2$O at room temperature until the desired pH of 10 was reached. Zirconium hydroxide mixture was then dried in an oven at 100°C for 12 hours. Zirconia nanoparticle was obtained through calcination at 600°C for 2 hours.

Preparation of epoxy/ ZrO$_2$ nanocomposites

Epoxy resin and hardener were used in this study to develop pure and ZrO$_2$ nanofiller imposed epoxy nanocomposites for different ZrO$_2$ weight percentage (1, 3, 5, and 7) wt %. The method used in preparation of epoxy/ZrO$_2$ nanocomposite sample is Solution Casting. For pure sample, Epoxy resin of 60g and hardener of 6g were poured separately in two beakers. To remove the air bubbles, both were need to be ultrasonicated for 30 minutes. After the completion of this process, the hardener was added to the epoxy resin and it was mixed by hand stirring. Then it was ultrasonicated to remove air bubbles generated during the mixing process. After degassing, the mixture was poured into the metal mould. The metal mould was kept undisturbed for 1 hour at room temperature. Finally, the sample was cured by keeping the mould in an oven at 100°C for 2 hours. Thus, neat epoxy sheet was obtained. For epoxy/ZrO$_2$ nanocomposites, 1wt% ZrO$_2$ nanofillers were added with the epoxy resin and the same procedure was repeated for 3wt %, 5wt % and 7wt % ZrO$_2$ added epoxy nanocomposites [16-18]. The photograph of developed polymer sheets is shown in Fig.1.

FIG. 1. Photograph of pure and ZrO$_2$ imposed nanocomposite sheets.

Results and Discussion

Powder X-ray diffraction Analysis

PXRD pattern of synthesized Zirconia nanoparticles is reported in Fig.2. The XRD pattern of ZrO$_2$ nanoparticles are found to exhibit many diffraction peaks and of that, (111) reflection plane is very predominant and has high intensity. The crystallite size of synthesized ZrO$_2$ is found to be 36.21nm and this confirms that the prepared ZrO$_2$ particle is in nanoscale. The X-ray diffraction spectrum confirms that the pure ZrO$_2$ nanopowder is in monoclinic crystalline phase. The data obtained is in good agreement with standard JCPDS file no 89-9066.

Fourier Transform Infrared Analysis

Fourier Transform Infrared spectroscopy was used to characterize the prepared pure epoxy and ZrO$_2$ imposed epoxy nanocomposite samples. The FTIR spectrum is shown in Fig.3 and assignments for prepared samples were listed in Table 1.

The structures of LY 556 epoxy resin and HY 951 hardener were confirmed by FTIR spectral analysis. In the FTIR spectrum of pure epoxy the band at 3431 cm$^{-1}$ corresponds to the vibration of hydroxyl (OH) group. The band at 3037 cm$^{-1}$ corresponds to the CH stretching vibration in aromatic ring. The peaks at 2973 cm$^{-1}$ and 2933 cm$^{-1}$ indicate the asymmetric C-H stretching of CH$_3$ and CH$_2$ groups respectively. The strong peaks at 1572 cm$^{-1}$, 1510 cm$^{-1}$ and 1425 cm$^{-1}$ indicate the asymmetric C-H stretching of CH$_3$ and CH$_2$ groups respectively. The strong peaks at 1572 cm$^{-1}$, 1510 cm$^{-1}$ and 1425 cm$^{-1}$ indicate the asymmetric C-H stretching vibration in aromatic ring. The asymmetric deformation of CH$_2$ produces absorption band at 1297 cm$^{-1}$. The asymmetric stretching of C-O in aromatic and aliphatic groups produce absorption bands at 1247 cm$^{-1}$ and 1182 cm$^{-1}$ respectively. The asymmetric stretching mode of C-O-C vibration
appears at 1040 cm\(^{-1}\). Absorption peak at 922 cm\(^{-1}\) corresponds to epoxide ring vibrations. The strong absorption peak at 828 cm\(^{-1}\) indicates C-H out of plane deformation in aromatic rings. The appearance of the bands at 649 cm\(^{-1}\) and 559 cm\(^{-1}\) indicates the bending vibrations of N-H and C-H respectively. The sharpness and intensity vary for different weight percentage ZrO\(_2\) nanofiller added epoxy nanocomposites. A slight shift in absorption bands are observed for ZrO\(_2\) nanofiller added epoxy systems. This is due to strong attraction of ZrO\(_2\) nanoparticles with epoxy [19].

![XRD pattern of ZrO\(_2\) nanoparticle.](image)

TABLE. 1. Frequency assignments of pure and ZrO\(_2\)-epoxy nanocomposites.

<table>
<thead>
<tr>
<th>Wave Number(cm(^{-1}))</th>
<th>Pure Epoxy</th>
<th>Epoxy + 1wt % ZrO(_2)</th>
<th>Epoxy + 3wt % ZrO(_2)</th>
<th>Epoxy + 5wt % ZrO(_2)</th>
<th>Epoxy + 7wt % ZrO(_2)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O-H Stretching</td>
</tr>
<tr>
<td>3431</td>
<td>3416</td>
<td>3433</td>
<td>3430</td>
<td>3419</td>
<td></td>
<td>C-H Stretching in Aromatics</td>
</tr>
<tr>
<td>3037</td>
<td>3036</td>
<td>3035</td>
<td>3032</td>
<td>3037</td>
<td></td>
<td>Asymmetric C-H Stretching of CH(_3) group</td>
</tr>
<tr>
<td>2973</td>
<td>2971</td>
<td>2975</td>
<td>2975</td>
<td>2971</td>
<td></td>
<td>Asymmetric C-H Stretching of CH(_2) group</td>
</tr>
<tr>
<td>2933</td>
<td>2932</td>
<td>2937</td>
<td>2935</td>
<td>2935</td>
<td></td>
<td>C-C Stretching vibration in aromatic</td>
</tr>
<tr>
<td>1572</td>
<td>1572</td>
<td>1571</td>
<td>1571</td>
<td>1572</td>
<td></td>
<td>Asymmetric CH(_2) deformation</td>
</tr>
<tr>
<td>1510</td>
<td>1510</td>
<td>1510</td>
<td>1511</td>
<td>1510</td>
<td></td>
<td>Asymmetric aromatic C-O Stretching</td>
</tr>
<tr>
<td>1425</td>
<td>1426</td>
<td>1424</td>
<td>1425</td>
<td>1426</td>
<td></td>
<td>Asymmetric aliphatic C-O Stretching</td>
</tr>
<tr>
<td>1297</td>
<td>1297</td>
<td>1297</td>
<td>1297</td>
<td>1297</td>
<td></td>
<td>Stretching vibration of C-O-C</td>
</tr>
</tbody>
</table>
Effect of ZrO$_2$ Nanofiller on the Physical Properties of Epoxy Composites: Mechanical, Thermal and Dielectric

<table>
<thead>
<tr>
<th>922</th>
<th>921</th>
<th>922</th>
<th>922</th>
<th>921</th>
<th>Epoxide ring vibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>828</td>
<td>828</td>
<td>827</td>
<td>828</td>
<td>828</td>
<td>C-H out of plane deformation in aromatic</td>
</tr>
<tr>
<td>649</td>
<td>649</td>
<td>649</td>
<td>649</td>
<td>649</td>
<td>Bending vibration of NH</td>
</tr>
<tr>
<td>559</td>
<td>559</td>
<td>560</td>
<td>560</td>
<td>559</td>
<td>Bending vibration of C-H</td>
</tr>
</tbody>
</table>

| Pure Epoxy | Epoxy + 1wt % ZrO$_2$ | Epoxy + 3wt % ZrO$_2$ | Epoxy + 5wt % ZrO$_2$ | Epoxy + 7wt % ZrO$_2$ |

![FTIR spectra](image)

FIG. 3. FTIR spectra of pure epoxy and ZrO$_2$-epoxy nanocomposites.

Thermal Analysis

Thermo Gravimetric Analysis (TGA)

The thermal properties were analyzed using differential scanning calorimetry and thermogravimetric analysis. The thermo gravimetric curves are shown in Fig. 4.

Both neat epoxy and ZrO$_2$/epoxy systems have similar decomposition profiles and the degradation takes place in two stages. Initial weight loss (weight started at 100°C) was observed in the thermograms corresponding to evaporation of water molecules from polymer samples [20]. The second step weight loss occurs due to the decomposition of polymer itself. As evident from thermograms, the nano-filler have significant effect on thermal stability of polymers. Table 2 shows the TGA data of pure epoxy and ZrO$_2$-epoxy nanocomposites.

257
The relative thermal stability of epoxy nanocomposites have been evaluated by comparing the decomposition temperatures at different percentage weight losses. The thermal stability of the ZrO$_2$ nanofiller added nanocomposites are observed to be slightly decreased as compared to that of neat epoxy. This may result from the spatial obstruction of nanoparticles on the formation of high cross-linked molecular structure of epoxy or increased free volume fractions in the polymer nanocomposites [21].

![Thermogravimetric curve of pure and ZrO$_2$ added epoxy nanocomposites.](image)

FIG. 4. Thermogravimetric curve of pure and ZrO$_2$ added epoxy nanocomposites.

TABLE 2. TGA data of pure and ZrO$_2$ doped epoxy nanocomposites

<table>
<thead>
<tr>
<th>Sample</th>
<th>T_1 (T$_{d1}^\circ$C)</th>
<th>T_2 (T$_{d2}^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Epoxy</td>
<td>281</td>
<td>507</td>
</tr>
<tr>
<td>E + 1wt%</td>
<td>275</td>
<td>500</td>
</tr>
<tr>
<td>E + 3wt%</td>
<td>273</td>
<td>489</td>
</tr>
<tr>
<td>E + 5wt%</td>
<td>271</td>
<td>509</td>
</tr>
<tr>
<td>E + 7wt%</td>
<td>268</td>
<td>504</td>
</tr>
</tbody>
</table>

Differential Thermal Analysis (DTA)

The DTA curves of pure and ZrO$_2$ imposed epoxy nanocomposites are presented in Fig. 5. It shows the effect of ZrO$_2$ nanoparticles on the glass transition temperature of the nanocomposites. The glass transition temperatures of pure epoxy and ZrO$_2$ imposed epoxy nanocomposites were listed in Table 3.

TABLE 3. Glass transition temperature of pure and ZrO$_2$ embedded epoxy nanocomposites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Glass Transition Temperature (T$_g^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat Epoxy</td>
<td>71.5</td>
</tr>
<tr>
<td>E+1wt%</td>
<td>69.7</td>
</tr>
<tr>
<td>E+3wt%</td>
<td>70.7</td>
</tr>
<tr>
<td>E+5wt%</td>
<td>69.3</td>
</tr>
<tr>
<td>E+7wt%</td>
<td>70.2</td>
</tr>
</tbody>
</table>
Effect of ZrO$_2$ Nanofiller on the Physical Properties of Epoxy Composites: Mechanical, Thermal and Dielectric

It can be ascertained from the Fig. 5 that for the filler loadings, the glass transition temperature is lower than that of unfilled epoxy. The changes in T_g are due to the effect of nanoparticles only. Few studies in polymer nanocomposites have suggested that polymer nanoparticle interactions actually lead to the formation of more than one nanolayer around the nanoparticle [22].

In addition to the formation of the immobile polymer close to the particle, another polymer layer with a thickness slightly more than that of the immobile layer forms over this. The polymer segments in this extended layer are reported to be loosely bound and they relax faster causing a reduction in the nanocomposites glass transition temperature [23].

Electrical Analysis

The variations of dielectric constant with temperature and frequency for the epoxy nanocomposites having ZrO$_2$ nanofillers at different filler concentrations are shown in Figs. 6-7.
From Fig. 6, it can be seen that the dielectric constant increases with the increase in temperature for all the tested nanocomposites. This dependence is observed for pure and all the four filler concentrations. At low temperatures the orientational mode cannot contribute to polarization. This leads to a lower dielectric constant at low temperatures. From Fig.7, the dielectric constant of neat and ZrO$_2$ imposed epoxy nanocomposites increases with increasing frequency above 10^4 Hz. At lower frequencies of applied voltage, all the free dipolar functional groups in the epoxy chain can orient themselves resulting in a higher ε_r value at these frequencies. Further increases frequency, the ε_r value increases. ZrO$_2$ displays strong ionic polarization due to Zr$^{4+}$ and O$^{2-}$ ions and therefore has a high value of dielectric constant [24]. In this study it is found that 7wt% ZrO$_2$ nanofilled added epoxy system has high dielectric constant.

Temperature at 1kHz Frequency at 40$^\circ$C

From Fig. 8, it can be seen that the dielectric loss increases with the increase in temperature for all the tested samples. The dielectric loss values for ZrO$_2$ nanofiller added epoxy nanocomposites are less than that of unfilled epoxy. From Fig. 9, pure and ZrO$_2$ nanofiller added epoxy nanocomposites show that the values of dielectric loss with 1wt%, 3wt%, 5wt% and 7wt% filler concentrations are less than that of unfilled epoxy. Dielectric loss depends on the electrical conductivity in the epoxy composites. The electrical conductivity in turn depends on the number of charge carriers in the material, the relaxation time of the charge carriers and the frequency of the applied electric field. This observation probably is due to the presence of the significant number of nanoparticle in the system which influences in the electrical conductivity mechanism in the nanocomposites [24].
Effect of ZrO$_2$ Nanofiller on the Physical Properties of Epoxy Composites: Mechanical, Thermal and Dielectric

From Fig. 10, it can be seen that the AC Conductivity increases with the increase in temperature for all the tested nanocomposites. Pure epoxy and epoxy-ZrO$_2$ imposed epoxy nanocomposites show different dielectric behaviors, depending on the frequency and on the filler concentration. In our present study, the dielectric behavior is very little influenced by the type of the filler and filler concentration.
Mechanical Analysis

Values of tensile strength and flexural strength for pure and ZrO$_2$ nanofiller (3 wt% and 5 wt%) imposed epoxy nanocomposites are shown in table 4. It shows that the neat epoxy has maximum tensile strength. For ZrO$_2$ nanofiller (3 wt% and 5 wt%) added epoxy nanocomposites, the tensile strength and flexural strength decreased when compared with neat epoxy. Thus, result indicates there may be agglomeration of nanoparticles owing to less interaction with resin [25]. Table 4 shows the values of tensile strength and flexural strength of pure epoxy and nanocomposites.

TABLE 4. Tensile strength and Flexural strength.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tensile strength (MPa)</th>
<th>Flexural strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Epoxy</td>
<td>25.5</td>
<td>79.6</td>
</tr>
<tr>
<td>Epoxy + 3wt% ZrO$_2$</td>
<td>24.5</td>
<td>43.5</td>
</tr>
<tr>
<td>Epoxy + 5wt% ZrO$_2$</td>
<td>21.0</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Conclusion

ZrO$_2$ nanoparticles were prepared by precipitation method. The prepared ZrO$_2$ nanoparticles were subjected to XRD characterization. The grain size of ZrO$_2$ was calculated by Debye-Scherrer formula. The grain size of synthesized ZrO$_2$ is found to be
36.21nm and this confirms that the prepared ZrO$_2$ particle is in nanoscale. Neat and ZrO$_2$ nanoparticles imposed epoxy composites were synthesized by solution casting method. FTIR study proved the occurrence of epoxy and amine hardener and its interaction with ZrO$_2$ nanoparticles. The sharpness and intensity of the peak vary for different weight percentage ZrO$_2$ nanofiller added epoxy nanocomposites. Thermo gravimetric analysis has been employed to investigate the thermal characteristics and their mode of thermal degradation. The TGA thermograms of Epoxy/ZrO$_2$ nanocomposites systems exhibit lower decomposition temperature behaviours compared to neat epoxy. The glass transition temperature was determined using DTA curve and it was observed that the glass transition temperature of Epoxy/ZrO$_2$ polymer nanocomposites decreases when compared with neat Epoxy. The thermal stability was not enhanced in Epoxy/ZrO$_2$ polymer nanocomposites when compared with neat epoxy. Dielectric properties such as dielectric loss and dielectric constant are evaluated, to determine the electrical conductivity of prepared polymer samples. Dielectric results showed that, it is a frequency dependent parameter. For ZrO$_2$ nanofiller added composites (3wt% and 5wt%), the tensile strength decreases compared with neat epoxy. Flexural strength is higher for neat epoxy when compared with ZrO$_2$ imposed epoxy system. This indicates that there may be agglomeration of nanoparticles owing to less interaction with resin.

References
