Impedance
Spectroscopy and
Dielectric
Properties of
Carbon Nanotube-Reinforced
Epoxy Polymer
Composites
Z. Samira,
S. Boukheira,b,
R. Belhimriaa,
M. E. Achoura*,
N. Éberc,
L. C. Costad
and A.
Oueriaglib
a
Laboratory of
Material Physics
and Subatomic,
Faculty of
Sciences, Ibn
Tofail
University, BP
242, 14000
Kenitra,
Morocco.
Email:
achour.me@univ-ibntofail.ac.ma
b
Laboratoire
LN2E, Faculté
des Sciences,
Université Cadi
Ayyad, B.P.
2390, Marrakech,
Morocco.
c
Institute for
Solid State
Physics and
Optics, Wigner
Research Centre
for Physics,
Hungarian
Academy of
Sciences, H-1525
Budapest,
P.O.Box 49,
Hungary.
d
Physics
Department,
University of
Aveiro, 3810-193
Aveiro,
Portugal.
Doi :
https://doi.org/10.47011/13.2.3
Cited by :
Jordan J. Phys.,
13 (2) (2020)
113-121
PDF
Received
on:
08/08/2019;
Accepted
on:
29/12/2019
Abstract:
The aim of
this
work is
to
investigate
the
electric
properties
of
carbon
nanotube-reinforced
epoxy
polymer
composites,
using
impedance
spectroscopy,
in the
frequency
range
from 1
QUOTE
to
10
QUOTE
and
over the
temperature
range
from 25
to 105
QUOTE
.
The
dielectric
response
was
analyzed
using
the
complex
permittivity
and the
electrical
modulus
formalisms,
depending
on
temperature
and
filler
concentration
in the
polymer
matrix.
Furthermore,
an
equivalent
circuit
model is
proposed
to
describe
the
impedance
response
of
carbon
nanotubes/epoxy
composites.
The
impedance
studies
disclosed
the
appearance
of grain
and
grain-boundary
effects,
as
confirmed
by the
Nyquist
plot.
Keywords:
Carbon
nanotubes,
Composites,
Impedance
spectroscopy,
Equivalent
circuit
model,
Grain
effect,
Grain-boundary
effect.
References
[1] Breuer, O.
and Sundararaj,
U., Polym.
Compos., 25
(2004) 645.
[2] Xie, X.L.,
Mai, Y.W. and
Zhou, X.P.,
Mater. Sci.
Eng. Rep.,
49 (2005) 112.
[3] Allaoui, A.,
Bai, S., Cheng,
H.M. and Bai,
J.B., Compos.
Sci. Technol.,
62 (2002) 1998.
[4] Putz, K.W.,
Mitchell, C.A.,
Krishnamoorti,
R. and Green,
P.F., J. Polym.
Sci. B., 42
(2004) 2293.
[5] Du, F.,
Fischer, J.E.
and Winey, K.I.,
J. Polym.
Sci. B., 41
(2003) 3338.
[6] Dai, J.,
Wang, Q., Li,
W., Wei, Z. and
Xu, G., Mater.
Lett., 61 (2007)
29.
[7] Valentini,
L., Puglia, D.,
Frulloni, E.,
Armentano, I.,
Kenny, J.M. and
Santucci, S.,
Compos. Sci.
Technol., 64
(2004) 33.
[8] Ounaies, Z.,
Park, C., Wise,
K.E., Siochi,
E.J. and
Harrison, J.S.,
Compos.
Sci. Technol.,
63 (2003) 1646.
[9] Sandler, J.,
Shaffer, M.S.P.,
Prasse, T.,
Bauhofer, W.,
Schulte, K. and
Windle, A.H.,
Polymer., 40
(1991) 5971.
[10] Ivanov, E.,
Kotsilkova, R.
and Krusteva E.,
J. Nanopart.
Res., 13 (2011)
3403.
[11] Jin, F.L.
and Park, S.J.,
Carbon Lett., 14
(2013) 13.
[12] Pourzahedi,
L., Zhai, P.,
Isaacs, J.A. and
Eckelman, M.J.,
J. Clean Prod.,
142 (2017) 1978.
[13] Verma, S.,
US Patents.,
5,872,332A, Feb.
23, 1999.
[14] Albano, M.,
Micheli, D.,
Gradoni, G.,
Morales, R.B.,
Marchetti, M.,
Moglie, F. and
Primiani, V.M.,
Acta Astronaut.
87 (2013) 39.
[15] Gooch, J.W.
and Daher, J.K.,
"Electromagnetic
Shielding and
Corrosion
Protection for
Aerospace
Vehicles", (New
York, NY, USA:
Springer, 2007).
[16] Samir, Z.,
El Merabet, Y.,
Graça, M.P.F.,
Teixeira, S.S.,
Achour, M.E. and
Costa, L.C.,
Polym. Compos.,
39 (2016) 1302.
[17] Samir, Z.,
El Merabet, Y.,
Graça, M.P.F.,
Teixeira, S.S.,
Achour, M.E. and
Costa, L.C., J.
Compos.
Mater., 51
(2017) 1837.
[18] Boukheir,
S., Len, A.,
Füzi, J.,
Kenderesi, V.,
Achour, M.E.,
Éber, N., Costa,
L.C.,
Outzourhit, A.
and Oueriagli,
A., J. Appl.
Polym. Sci., 134
(2016) 44514.
[19] Boukheir,
S., Len, A.,
Füzi, J.,
Kenderesi, V.,
Achour, M.E.,
Éber, N., Costa,
L.C.,
Outzourhit, A.
and Oueriagli,
A., Spectroscopy
Letters, 50
(2016) 188.
[20] Samir, Z.,
Belhimria, R.,
Boukheir, S.,
Achour, M.E. and
Costa, L.C.,
Jordan J. Phys.,
11 (1) (2018)
35.
[21]
Boukheir,
S., Samir,
Z.,
Belhimria,
R.,
Kreit,
L.,
Achour,
M.E.,
Éber,
N.,
Costa,
L.C, Oueriagli,
A.
and
Outzourhit,
A., J.
Macromol.
Sci. B, 57
(2018) 221.
[22] Samir, Z.,
Boukheir, S.,
Belhimria, R.,
Achour, M.E. and
Costa. L.C.
Journal of
Superconductivity
and Novel
Magnetism,
32 (2019) 185.
https://doi.org/10.1007/s10948-018-4696-6.
[23] Asami, K., Prog.
Polym. Sci., 27
(2002) 165.
[24] Barucci,
M., Bianchini,
G., Gottardi,
E., Peroni, I.
and Ventura,
G., Cryogenics, 39
(1999) 966.
[25] Achour,
M.E., Salome,
L., Benaboud,
K., Carmona, F.
and Miane, J.L.,
Adv. Mater.
Res., 1 (1994)
468.
[26] Belattar,
J., Graça,
M.P.F., Costa,
L.C., Achour,
M.E. and
Brosseau, C., J.
Appl.
Phys., 107
(2010) 124111.
[27] Mcclory,
C., Seow, J.C.
and McNally, T.,
Aust. J. Chem.,
62 (2009) 785.
[28] Kolekar,
Y.D., Sanchez,
L.J. and Ramana,
C.V.,
J.
Appl. Phys., 115
(2014) 144106.
[29] Mohanty,
S., Choudhary,
RN.P., Padhee,
R. and Parida,
B.N., Ceram.
Int., 40 (2014)
9025.
[30] Nayek, C.,
Murugavel, P.,
Kumar, S.D. and
Subramanian, V.,
Appl. Phys. A,
120 (2015) 622.
[31] Orazem,
M.E., Frateur,
I., Tribollet,
B., Vivier, V.,
Marcelin, S.,
Pébère, N. and
Musiani, M., J.
Electrochem.
Soc., 160 (2013)
C225.
[32] Sanli, A.,
Müller, C.,
Kanoun, O.,
Elibol, C. and
Wagner, M.F.X., Compos.
Sci. Technol.,
122 (2016) 26.
[33] Messaoud,
N.B., Ghica,
M.E., Dridi, C.,
Ali, M.B. and
Brett, C.M., Sens.
Actuator B-Chem.,
253 (2016) 522.
[34] Kumar, M.,
Shankar, S.,
Kumar, S.,
Thakur, O. P.
and Ghosh, A.K.,
Phys.
Lett. A., 381
(2017) 386.
|