Structure, Synthesis and
Applications of
ZnO
Nanoparticles:
A Review
H. H. Azeeza*,
A. A. Barzinjya,b
and
S. M. Hamadc,d
a
Department of
Physics, College
of Education,
Salahaddin
University-Erbil,
Kurdistan
Region, Iraq.
Email:
azeez.azeez@su.edu.krd
b
Department of
Physics
Education,
Faculty of
Education, Tishk
International
University,
Erbil, Kurdistan
Region, Iraq.
c
Scientific
Research Centre,
Soran
University,
Soran 44008,
Kurdistan
Region, Iraq.
d
Computer
Department,
Cihan
University-Erbil,
Kurdistan
Region, Iraq.
Doi :
https://doi.org/10.47011/13.2.4
Cited by :
Jordan J. Phys.,
13 (2) (2020)
123-135
PDF
Received
on:
08/08/2019;
Accepted
on:
1/12/2019
Abstract:
Nanotechnology
deals
with the
creation
and
utilization
of
materials
at a
nanoscale.
Nanoparticles,
in
general,
possess
enormous
surface
area per
unit
volume
and have
explicit
characteristics.
Zinc
oxide (ZnO)
- based
nanomaterials
have
been
recognized
to be of
countless
uses for
numerous
important
requests
from the
beginning
of
nanoscience
as a
result
of the
great
quantity
of zinc
element
and the
comparatively
simple
adaptation
of its
oxide to
nanostructures.
Currently,
ZnO as
nanoparticles,
nanowires,
nanofibers
in
addition
to other
classy
nanostructures
occurs
amongst
the
innovator
nanomaterials
utilized
in solar
cell
systems,
fuel
cells,
water
purification
and
biomedical
fields.
ZnO
nanoparticles
had been
a
research
target
for many
investigations
because
of their
vast
band-gap
and
extraordinary
exciton
binding
energy.
The
performance
of ZnO
nanoparticles
is
completely
different
from
those of
corresponding
bulk
materials,
through
enhancing
the
properties
and
using
lesser
amount
of
materials,
which
leads to
price
reduction.
The main
purpose
behind
this
review
article
is to
give a
deep
view on
structure,
synthesis
and
applications
of ZnO
nanoparticles
prepared
through
various
approaches
to give
the
reader a
comprehensive
understanding.
Keywords:
ZnO,
Nanoparticles,
Structure,
Synthesis,
Applications.
References
[1] ADDIN
EN.REFLIST
Kumar, H. and
Rani, R.,
International
Letters of
Chemistry,
Physics and
Astronomy, 14
(2013) 26.
[2] Khan, I.,
Saeed, K. and
Khan, I.,
Arabian Journal
of Chemistry, 12
(7) (2019) 908.
[3] Parihar, V.,
Raja, M. and
Paulose, R.,
Reviews on
Advanced
Materials
Science, 53 (2)
(2018) 119.
[4] Wang, D. et
al., Nano-Structures
& Nano-Objects,
10 (2017) 1.
[5] Tomchenko,
A.A. et al.,
Sensors and
Actuators B:
Chemical, 93
(1-3) (2003)
126.
[6] Marci, G. et
al., The Journal
of Physical
Chemistry B, 105
(5) (2001) 1033.
[7] Singh, S. et
al., Nano-Structures
& Nano-Objects,
11 (2017) 1.
[8] Serpone, N.,
Dondi, D. and
Albini, A.,
Inorganica
Chimica Acta,
360 (3) (2007)
794.
[9] Ozgur, U.,
Hofstetter, D.
and Morkoc, H.,
Proceedings of
the IEEE, 98 (7)
(2010) 1255.
[10] Sabir, S.,
Arshad, M. and
Chaudhari, S.K.,
The Scientific
World Journal,
2014 (2014) 1.
[11] Makarona,
E. et al., Nano-Structures
& Nano-Objects,
10 (2017) 57.
[12] Frade, T.,
Jorge, M.M. and
Gomes, A.,
Materials
Letters, 82
(2012) 13.
[13] Ao, W. et
al., Powder
Technology, 168
(3) (2006) 148.
[14] Stanković,
A. et al.,
Journal of
Materials
Science, 46 (11)
(2011) 3716.
[15] Lanje, A.S.
et al., Advanced
Powder
Technology, 24
(1) (2013) 331.
[16] Khoshhesab,
Z.M., Sarfaraz,
M. and Houshyar,
Z., Synthesis
and Reactivity
in Inorganic,
Metal-Organic
and Nano-Metal
Chemistry, 42
(10) (2012)
1363.
[17] Li, P. et
al., Journal of
Solid State
Chemistry, 178
(3) (2005) 855.
[18] Mahato, T.
et al., Journal
of Hazardous
Materials, 165
(1-3) (2009)
928.
[19] Dem'Yanets,
L., Li, L. and
Uvarova, T.,
Journal of
Materials
Science, 41 (5)
(2006) 1439.
[20] Chen, D.,
Jiao, X. and
Cheng, G., Solid
State
Communications,
113 (6) (1999)
363.
[21] Lu, C.-H.
and Yeh, C.-H.,
Materials
Letters, 33
(3-4) (1997)
129.
[22] Li, X. et
al., Journal of
Colloid and
Interface
Science, 333 (2)
(2009) 465.
[23] Park, J.-H.
et al., Applied
Physics Letters,
89 (12) (2006)
121108.
[24] Fons, P. et
al., Physical
Review Letters,
96 (4) (2006)
045504.
[25] Joseph, B.
et al.,
Materials
Chemistry and
Physics, 58 (1)
(1999) 71.
[26] Chen, J. et
al., Applied
Physics Letters,
87 (17) (2005)
173119.
[27]
Kołodziejczak-Radzimska,
A. and
Jesionowski, T.,
Materials, 7 (4)
(2014) 2833.
[28]
Sirelkhatim, A.
et al.,
Nano-Micro
Letters, 7 (3)
(2015) 219.
[29] Hahn,
Y.-B., Korean
Journal of
Chemical
Engineering, 28
(9) (2011) 1797.
[30] Ding, Y.,
Zhang, F. and
Wang, Z.L.,
Nano-Research, 6
(4) (2013) 253.
[31] Xie, Q. et
al., Solid State
Communications,
136 (5) (2005)
304.
[32] Chen, W. et
al., Applied
Surface Science,
253 (16) (2007)
6749.
[33] Haq, I.U.
and Azad, A.-M.,
Sensors, 12 (6)
(2012) 8259.
[34] Wang, Z.L.,
Kong, X. and
Zuo, J.-M.,
Physical Review
Letters, 91 (18)
(2003) 185502.
[35] Dulub, O.,
Boatner, L.A.
and Diebold, U.,
Surface Science,
519 (3) (2002)
201.
[36] Kabbara, H.
et al.,
Nano-Structures
& Nano-Objects,
10 (2017) 22.
[37] Manthina,
V. and Agrios,
A.G., Nano-Structures
& Nano-Objects,
7 (2016) 1.
[38] Gayen, R.
and Paul, R.,
Thin Solid
Films, 605
(2016) 248.
[39] Ghorbani,
H.R., Oriental
Journal of
Chemistry, 30
(4) (2014) 1941.
[40] Chen, D. et
al., High-energy
Ball Milling,
Mechanochemical
Processing of
Nanopowders
(2010) 149.
[41] Darroudi,
M. et al.,
Ceramics
International,
39 (8) (2013)
9195.
[42] Moezzi, A.,
McDonagh, A.M.
and Cortie, M.B.,
Chemical
Engineering
Journal, 185
(2012) 1.
[43] Fan, J.,
Boettcher, S.W.
and Stucky, G.D.,
Chemistry of
Materials, 18
(26) (2006)
6391.
[44] Salahuddin,
N.A., El-Kemary,
M. and Ibrahim,
E.M.,
International
Journal of
Scientific and
Research
Publications, 5
(9) (2015) 1.
[45] Madathil,
A.N.P., Vanaja,
K. and Jayaraj,
M., Proc. in
Nanophotonic
Materials IV,
66390J (2007).
International
Society for
Optics and
Photonics.
[46] Masuda, Y.,
Kinoshita, N.
and Koumoto, K.,
ISRN
Nanotechnology,
2012 (2012) 1.
[47] Sinkó, K.,
Szabó, G. and
Zrínyi, M.,
Journal of
Nanoscience and
Nanotechnology,
11 (5) (2011)
4127.
[48] Sadraei,
R., Research &
Reviews: Journal
of Chemistry,
2319 (2016)
9849.
[49]
Rodrıguez-Paéz,
J. et al.,
Journal of the
European Ceramic
Society, 21 (7)
(2001) 925.
[50] Kong, X.Y.
and Wang, Z.L.,
Nano-letters, 3
(12) (2003)
1625.
[51] Bai, X. et
al., Applied
Physics Letters,
82 (26) (2003)
4806.
[52] Kuo, T.-J.
et al.,
Chemistry of
Materials, 19
(21) (2007)
5143.
[53] Roduner,
E., Chemical
Society Reviews,
35 (7) (2006)
583.
[54] Kukreja,
L., Barik, S.
and Misra, P.,
Journal of
Crystal Growth,
268 (3-4) (2004)
531.
[55] Hughes, W.L.
and Wang, Z.L.,
Applied Physics
Letters, 82 (17)
(2003) 2886.
[56] Kita, K.,
Kyuno, K. and
Toriumi, A.,
Applied Physics
Letters, 85 (1)
(2004) 52.
[57] Chu, D. and
Li, S., New
Journal of Glass
and Ceramics, 2
(01) (2012) 13.
[58] Madhuri,
K.P., Bramhaiah,
K. and John, N.S.,
In: AIP
Conference
Proceedings,
(2016), AIP
Publishing.
[59] Yong-gang,
W. and
Xiao-gang, Z.,
Electrochimica
Acta, 49 (12)
(2004) 1957.
[60] Gamby, J.
et al., Journal
of Power
Sources, 101 (1)
(2001) 109.
[61] Raja, M. et
al., Fullerenes,
Nanotubes and
Carbon
Nanostructures,
23 (8) (2015)
691.
[62] Song, W.-T.
et al., Int. J.
Electrochem.
Sci., 7 (3)
(2012) 2164.
[63] Babu, K.S.
and Narayanan,
V., Chemical
Science
Transactions, 2
(S1) (2013) S33.
[64] Luo, L. et
al., Ceramics
International,
42 (9) (2016)
10826.
[65] Guler, M.O.
et al.,
Microelectronic
Engineering, 118
(2014) 54.
[66] Rauwel, P.
et al., Journal
of Nanomaterials,
2016 (2016) 19.
[67] El Hichou,
A. et al.,
Journal of
Luminescence,
113 (3-4) (2005)
183.
[68] Osmond, M.J.
and Mccall, M.J.,
Nanotoxicology,
4 (1) (2010) 15.
[69] Prasad, T.
et al., Journal
of Plant
Nutrition, 35
(6) (2012) 905.
[70] Paul, S.
and Ban, D.K.,
International
Journal of
Advances in
Chemical
Engineering and
Biological
Sciences (IJACEBS),
1 (1) (2014) 1.
|