JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Structure, Synthesis and Applications of ZnO Nanoparticles: A Review

H. H. Azeeza*,   A. A. Barzinjya,b   and   S. M. Hamadc,d

a Department of Physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq. Email: azeez.azeez@su.edu.krd

b Department of Physics Education, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq.

c Scientific Research Centre, Soran University, Soran 44008, Kurdistan Region, Iraq.

d Computer Department, Cihan University-Erbil, Kurdistan Region, Iraq.

Doi : https://doi.org/10.47011/13.2.4

Cited by : Jordan J. Phys., 13 (2) (2020) 123-135

PDF

Received on: 08/08/2019;                                                               Accepted on: 1/12/2019

Abstract: Nanotechnology deals with the creation and utilization of materials at a nanoscale. Nanoparticles, in general, possess enormous surface area per unit volume and have explicit characteristics. Zinc oxide (ZnO) - based nanomaterials have been recognized to be of countless uses for numerous important requests from the beginning of nanoscience as a result of the great quantity of zinc element and the comparatively simple adaptation of its oxide to nanostructures. Currently, ZnO as nanoparticles, nanowires, nanofibers in addition to other classy nanostructures occurs amongst the innovator nanomaterials utilized in solar cell systems, fuel cells, water purification and biomedical fields. ZnO nanoparticles had been a research target for many investigations because of their vast band-gap and extraordinary exciton binding energy. The performance of ZnO nanoparticles is completely different from those of corresponding bulk materials, through enhancing the properties and using lesser amount of materials, which leads to price reduction. The main purpose behind this review article is to give a deep view on structure, synthesis and applications of ZnO nanoparticles prepared through various approaches to give the reader a comprehensive understanding.

Keywords: ZnO, Nanoparticles, Structure, Synthesis, Applications.

 

References

[1]  ADDIN EN.REFLIST Kumar, H. and Rani, R., International Letters of Chemistry, Physics and Astronomy, 14 (2013) 26.

[2] Khan, I., Saeed, K. and Khan, I., Arabian Journal of Chemistry, 12 (7) (2019) 908.

[3] Parihar, V., Raja, M. and Paulose, R., Reviews on Advanced Materials Science, 53 (2) (2018) 119.

[4] Wang, D. et al., Nano-Structures & Nano-Objects, 10 (2017) 1.

[5] Tomchenko, A.A. et al., Sensors and Actuators B: Chemical, 93 (1-3) (2003) 126.

[6] Marci, G. et al., The Journal of Physical Chemistry B, 105 (5) (2001) 1033.

[7] Singh, S. et al., Nano-Structures & Nano-Objects, 11 (2017) 1.

[8] Serpone, N., Dondi, D. and Albini, A., Inorganica Chimica Acta, 360 (3) (2007) 794.

[9] Ozgur, U., Hofstetter, D. and Morkoc, H., Proceedings of the IEEE, 98 (7) (2010) 1255.

[10] Sabir, S., Arshad, M. and Chaudhari, S.K., The Scientific World Journal, 2014 (2014) 1.

[11] Makarona, E. et al., Nano-Structures & Nano-Objects, 10 (2017) 57.

[12] Frade, T., Jorge, M.M. and Gomes, A., Materials Letters, 82 (2012) 13.

[13] Ao, W. et al., Powder Technology, 168 (3) (2006) 148.

[14] Stanković, A. et al., Journal of Materials Science, 46 (11) (2011) 3716.

[15] Lanje, A.S. et al., Advanced Powder Technology, 24 (1) (2013) 331.

[16] Khoshhesab, Z.M., Sarfaraz, M. and Houshyar, Z., Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 42 (10) (2012) 1363.

[17] Li, P. et al., Journal of Solid State Chemistry, 178 (3) (2005) 855.

[18] Mahato, T. et al., Journal of Hazardous Materials, 165 (1-3) (2009) 928.

[19] Dem'Yanets, L., Li, L. and Uvarova, T., Journal of Materials Science, 41 (5) (2006) 1439.

[20] Chen, D., Jiao, X. and Cheng, G., Solid State Communications, 113 (6) (1999) 363.

[21] Lu, C.-H. and Yeh, C.-H., Materials Letters, 33 (3-4) (1997) 129.

[22] Li, X. et al., Journal of Colloid and Interface Science, 333 (2) (2009) 465.

[23] Park, J.-H. et al., Applied Physics Letters, 89 (12) (2006) 121108.

[24] Fons, P. et al., Physical Review Letters, 96 (4) (2006) 045504.

[25] Joseph, B. et al., Materials Chemistry and Physics, 58 (1) (1999) 71.

[26] Chen, J. et al., Applied Physics Letters, 87 (17) (2005) 173119.

[27] Kołodziejczak-Radzimska, A. and Jesionowski, T., Materials, 7 (4) (2014) 2833.

[28] Sirelkhatim, A. et al., Nano-Micro Letters, 7 (3) (2015) 219.

[29] Hahn, Y.-B., Korean Journal of Chemical Engineering, 28 (9) (2011) 1797.

[30] Ding, Y., Zhang, F. and Wang, Z.L., Nano-Research, 6 (4) (2013) 253.

[31] Xie, Q. et al., Solid State Communications, 136 (5) (2005) 304.

[32] Chen, W. et al., Applied Surface Science, 253 (16) (2007) 6749.

[33] Haq, I.U. and Azad, A.-M., Sensors, 12 (6) (2012) 8259.

[34] Wang, Z.L., Kong, X. and Zuo, J.-M., Physical Review Letters, 91 (18) (2003) 185502.

[35] Dulub, O., Boatner, L.A. and Diebold, U., Surface Science, 519 (3) (2002) 201.

[36] Kabbara, H. et al., Nano-Structures & Nano-Objects, 10 (2017) 22.

[37] Manthina, V. and Agrios, A.G., Nano-Structures & Nano-Objects, 7 (2016) 1.

[38] Gayen, R. and Paul, R., Thin Solid Films, 605 (2016) 248.

[39] Ghorbani, H.R., Oriental Journal of Chemistry, 30 (4) (2014) 1941.

[40] Chen, D. et al., High-energy Ball Milling, Mechanochemical Processing of Nanopowders (2010) 149.

[41] Darroudi, M. et al., Ceramics International, 39 (8) (2013) 9195.

[42] Moezzi, A., McDonagh, A.M. and Cortie, M.B., Chemical Engineering Journal, 185 (2012) 1.

[43] Fan, J., Boettcher, S.W. and Stucky, G.D., Chemistry of Materials, 18 (26) (2006) 6391.

[44] Salahuddin, N.A., El-Kemary, M. and Ibrahim, E.M., International Journal of Scientific and Research Publications, 5 (9) (2015) 1.

[45] Madathil, A.N.P., Vanaja, K. and Jayaraj, M., Proc. in Nanophotonic Materials IV, 66390J (2007). International Society for Optics and Photonics.

[46] Masuda, Y., Kinoshita, N. and Koumoto, K., ISRN Nanotechnology, 2012 (2012) 1.

[47] Sinkó, K., Szabó, G. and Zrínyi, M., Journal of Nanoscience and Nanotechnology, 11 (5) (2011) 4127.

[48] Sadraei, R., Research & Reviews: Journal of Chemistry, 2319 (2016) 9849.

[49] Rodrıguez-Paéz, J. et al., Journal of the European Ceramic Society, 21 (7) (2001) 925.

[50] Kong, X.Y. and Wang, Z.L., Nano-letters, 3 (12) (2003) 1625.

[51] Bai, X. et al., Applied Physics Letters, 82 (26) (2003) 4806.

[52] Kuo, T.-J. et al., Chemistry of Materials, 19 (21) (2007) 5143.

[53] Roduner, E., Chemical Society Reviews, 35 (7) (2006) 583.

[54] Kukreja, L., Barik, S. and Misra, P., Journal of Crystal Growth, 268 (3-4) (2004) 531.

[55] Hughes, W.L. and Wang, Z.L., Applied Physics Letters, 82 (17) (2003) 2886.

[56] Kita, K., Kyuno, K. and Toriumi, A., Applied Physics Letters, 85 (1) (2004) 52.

[57] Chu, D. and Li, S., New Journal of Glass and Ceramics, 2 (01) (2012) 13.

[58] Madhuri, K.P., Bramhaiah, K. and John, N.S., In: AIP Conference Proceedings, (2016), AIP Publishing.

[59] Yong-gang, W. and Xiao-gang, Z., Electrochimica Acta, 49 (12) (2004) 1957.

[60] Gamby, J. et al., Journal of Power Sources, 101 (1) (2001) 109.

[61] Raja, M. et al., Fullerenes, Nanotubes and Carbon Nanostructures, 23 (8) (2015) 691.

[62] Song, W.-T. et al., Int. J. Electrochem. Sci., 7 (3) (2012) 2164.

[63] Babu, K.S. and Narayanan, V., Chemical Science Transactions, 2 (S1) (2013) S33.

[64] Luo, L. et al., Ceramics International, 42 (9) (2016) 10826.

[65] Guler, M.O. et al., Microelectronic Engineering, 118 (2014) 54.

[66] Rauwel, P. et al., Journal of Nanomaterials, 2016 (2016) 19.

[67] El Hichou, A. et al., Journal of Luminescence, 113 (3-4) (2005) 183.

[68] Osmond, M.J. and Mccall, M.J., Nanotoxicology, 4 (1) (2010) 15.

[69] Prasad, T. et al., Journal of Plant Nutrition, 35 (6) (2012) 905.

[70] Paul, S. and Ban, D.K., International Journal of Advances in Chemical Engineering and Biological Sciences (IJACEBS), 1 (1) (2014) 1.