Structural,
Electrical and
Thermal
Properties of
Composites Based
on Conducting
Polymer
N. Ariboua,
S. Barnossa,
M. El Hasnaouia*,
M. E. Achoura
and L. C.
Costab
a
Laboratory of
Material Physics
and Subatomic,
Faculty of
Sciences, Ibn
Tofail
University, BP
242, 14000
Kenitra,
Morocco.
Email:
med.elhasnaoui@uit.ac.ma
b
I3N and Physics
Department,
University of
Aveiro, 3810-193
Aveiro,
Portugal.
Doi :
https://doi.org/10.47011/13.2.7
Cited by :
Jordan J. Phys.,
13 (2) (2020)
157-163
PDF
Received
on:
08/08/2019;
Accepted
on:
3/11/2019
Abstract:
In this
work, we
report
the
structural,
thermal
and
electrical
properties
of
composites
consisting
of
polypyrrole
particles
in a
polymethylmethacrylate
matrix.
Electrical
resistivity
analysis
of these
percolating
composites
showed a
remarkable
change
in the
conduction
mechanisms
below
and
above
the
percolation
threshold.
Structural
properties
were
studied
using
X-ray
diffraction,
showing
increases
in the
crystallinity
index
for
filler
concentrations
above
the
critical
percolation.
Thermogravimetric
analysis
was used
to study
thermal
degradation.
It shows
a
transition
from a
single
peak for
concentrations
below
the
percolation
threshold
to a
double
peak for
concentrations
above
that
point.
The
increase
in the
degradation
temperature
with the
concentration
of
polypyrrole
indicates
the
increase
of
thermal
stability.
Keywords:
Conducting
polymer,
Percolation
threshold,
Crystallinity,
Thermal
degradation,
X-Ray
diffraction.
References
[1]
Chandrasekhar,
P., "Conducting
Polymers,
Fundamentals and
Applications:
Including Carbon
Nanotubes and
Graphene", 2nd
Ed., (Cham
Switzerland:
Springer
International
Publishing,
2018), pp.
549-714.
[2]
Deshpande, P.P.
and Sazou, D.,
“Corrosion
protection of
metals by
intrinsically
conducting
polymers", 1st
Ed., (CRC Press
LLC, New York,
2016).
[3]
Otero, T.F.,
Schneider, H.J.
and Shahinpoor,
M., "Conducting-polymers:
bioinspired
intelligent
materials and
devices", (Croydon
U.K.:
Royal Society of
Chemistry,
2015).
[4]
Bouknaitir, I.,
Aribou, N.,
Elhad Kassim,
S.A., El
Hasnaoui, M.,
Melo, B.M.G.,
Achour, M.E. and
Costa, L.C.,
Spectro.
Lett., 50 (2017)
196.
[5]
Achour, M.E.,
Droussi, A.,
Zoulef, S.,
Gmati, F.,
Fattoum, A.,
Belhadj, M.A.
and Zangar, H.,
Spectro. Lett.,
41 (2008) 328.
[6]
Costa, L.C.,
Henry, F.,
Valente, M.A.,
Mendiratta, S.K.
and Sombra,
A.S., Eur.
Polym. J., 38
(2002) 1495.
[7]
El Hasnaoui, M.,
Abazine, K.,
Achour, M.E. and
Costa, L.C., J.
Optoelectron.
Adv. Mater., 18
(2016) 389.
[8]
Aribou, N.,
Elmansouri, A.,
Achour, M.E.,
Costa, L.C.,
Belhadj, M.A.,
Oueriagli, A.
and Outzourhit,
A., Spectro.
Lett., 45 (2012)
477.
[9]
Belhadj, M.A.,
Miane, J.L. and
Zangar, H.,
Polym. Int., 50
(2001) 773.
[10]
Segal, L.,
Creely, J.J.,
Martin Jr., A.E.
and Conrad, C.M.,
Textile Res. J.,
29 (1959) 786.
[11]
Patel, A.K.,
Jain, N., Patel,
P., Das, K. and
Bajpai, R., AIP
Conference
Proceedings,
1942 (2018)
070029.
[12]
El-Zaher, N.A.,
Melegy, M.S. and
Guirguis, O.W.,
Natural Science,
6 (2014) 859.
[13]
Foulger, S.H.,
J. Appl. Polym.
Sci., 72 (1999)
1573.
[14]
Omastov, M. and
Simon, F., J.
Mater. Sci., 35
(2000) 1743.
[15]
Stauffer, D. and
Aharony, A.,
"Introduction to
percolation
theory", (Taylor
and Francis,
London, 1992).
[16]
Kirkpatrick, S.,
Rev.
Mod. Phys., 45
(1973) 574.
[17]
Grimaldi, C and
Balberg, I.,
Phys. Rev. Lett.,
96 (1) (2006)
066602.
[18]
Kovacs, J.Z.,
Velagala, B.S.,
Schulte, K. and
Bauhofer, W.,
Compos. Sci.
Technol., 67
(2007) 922.
[19]
Ma, P.-C.,
Siddiqui, N.A.,
Marom, G. and
Kim, J.K.,
Compos., Part A:
Appl. Sci. Manuf.,
41 (2010) 1345.
[20]
El-Zaher, N.A.,
Melegy, M.S. and
Guirguis, O.W.,
Natural Science,
6 (2014) 859.
[21]
Choi, H.J., Lim,
J.Y. and Zhang,
K., Diamond
Relat. Mater.,
17 (2008) 1498.
|