Structural and
Dielectric
Properties of Zn1-xMoxO
Nanoparticles
H. Basma*,
F. Al-Mokdad
and R. Awad
Department of
Physics, Faculty
of Science,
Materials
Science Lab,
Beirut Arab
University,
Debbieh,
Lebanon.
Email:
h.basma@bau.edu.lb;
hadibassma@gmail.com
Doi :
https://doi.org/10.47011/13.2.8
Cited by :
Jordan J. Phys.,
13 (2) (2020)
165-170
PDF
Received
on:
08/08/2019;
Accepted
on:
26/2/2020
Abstract:
In this
work,
samples
of zinc
oxide
nanoparticles
doped by
molybdenum
(Zn1-xMoxO
with 0 ≤
x ≤ 0.1)
were
prepared
by using
the wet
co-precipitation
method.
The
characterization
of the
prepared
samples
was
carried
out by
means of
X-ray
powder
diffraction
(XRD).
The
samples
reserved
their
hexagonal
wurtzite
structure
with Mo
doping
and
showed a
decrease
in the
crystallite
size up
to x =
0.04
followed
by a
further
increase.
On the
other
hand,
dielectric
measurements
were
performed
using an
LCR
meter.
The
effect
of
frequency
and
temperature
on the
dielectric
properties
such as
the real
and
imaginary
parts of
dielectric
constant
( and,
respectively),
dielectric
loss (tan)
and
ac-conductivity
()
of
Mo-doped
zinc
oxide
samples,
was
studied
in the
frequency
range
(100 Hz
- 1 MHz)
and at
temperatures
(300 -
773 K).
The
values
of room
temperature
dielectric
parameters
were
found to
be
strongly
dependent
on the
Mo-doping.
However,
the
increase
in
temperature
caused
an
enhancement
in the
values
of the
dielectric
parameters,
particularly
at 773
K.
Keywords:
Zinc
oxide,
XRD,
Dielectric
constants,
Ac-conductivity.
References
[1] Liang, P.,
Cai, H., Yang,
X., Li, H.,
Zhang, W., Xu,
N., Sun, J. and
Wu, J.,
Spectrochimica
Acta, Part B:
Atomic
Spectroscopy,
125 (1) (2016)
18.
[2] Anta, J.A.,
Guillén, E. and
Tena-Zaera, R., J.
Phys. Chem.
C, 116 (21)
(2012) 11413.
[3] Basma, H.,
Rahal, H.T., Al-Mokdad,
F., Romie, M.
and Awad, R.,
Mater. Res.
Express, 6
(7) (2019)
075001.
[4]
Kumar, P.,
Joshi, R., Gaur,
A., Kumar, L.
and Asokan, K.,
Mater. Res.
Express, 2
(4) (2015)
045901.
[5]
Akhtari, F.,
Zorriasatein,
S., Farahmandjou,
M. and Elahi,
S.M., Mater.
Res. Express,
5 (6) (2018)
065015.
[6] Sharrouf,
M., Awad, R.,
Marhaba, S. and
El-Said-Bakeer,
D., Nano, 11
(04) (2016)
1650042.
[7]
Sundar, S.A. and
John, N.J.,
IJEAS, 3 (3)
(2016) 26.
[8]
Belkhaoui, C.,
Mzabi, N. and
Smaoui, H.,
Mater. Res.
Bull.,
111 (2019) 70.
[9]
Boughalmi, R.,
Boukhachem, A.,
Gaied, I.,
Boubaker, K.,
Bouhafs, M. and
Amlouk, M.,
Mat. Sci. Semicon.
Proc.,
16 (6) (2013)
1584.
[10]
Ghosh, C.K.,
Malkhandi, S.,
Mitra, M.K. and
Chattopadhyay,
K.K., J. Phys.
D, 41 (24)
(2008) 245113.
[11]
Farhat, S.,
Rekaby, M. and
Awad, R., JSNM, 31
(9) (2018) 3051.
[12]
Prodromakis, T.
and
Papavassiliou,
C., Appl. Surf.
Sci., 255 (15)
(2009) 6989.
[13]
Koops, C.G.,
Phys. Rev., 83
(1) (1951) 121.
[14] Thomas, N.,
Jithin, P.V.,
Sudheesh, V.D.
and Sebastian,
V., J. Ceramint.,
43 (2017) 7305.
[15] Rajesh
Kumar, B.,
Hymavathi, B.
and
Subba-Rao, T.,
Journal of
Science:
Advanced
Materials and
Devices, 3 (4)
(2018) 433.
[16] Das, P.S.
and Singh, G.P.,
J. Magn. Magn.
Mater., 401
(2016) 918.
[17]
Zamiri, R.,
Kaushal, A.,
Rebelo, A. and
Ferreira, J.M.F.,
Ceram.
Int.,
40 (1) (2014)
1635.
[18]
Ashokkumar, M.
and Muthukumaran,
S., J. Lumin., 162
(2015) 97.
[19] Kingery,
W.D. et al.,
"Introduction
to Ceramics",
(John Wiley, New
York, 1975), p.
913.
[20] Moulson,
A.J. and
Herbert, J.M., "Electroceramics:
Materials,
Properties,
Applications", 2nd
Ed., (John Wiley
& Sons, Ltd.,
2003).
[21] Smyth,
C.P.,
"Dielectric
Behavior and
Structure",
(McGraw-Hill,
NewYork, 1955).
|