JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Structural and Dielectric Properties of Zn1-xMoxO Nanoparticles

H. Basma*,   F. Al-Mokdad   and   R. Awad

Department of Physics, Faculty of Science, Materials Science Lab, Beirut Arab University, Debbieh, Lebanon. Email: h.basma@bau.edu.lb; hadibassma@gmail.com

Doi : https://doi.org/10.47011/13.2.8

Cited by : Jordan J. Phys., 13 (2) (2020) 165-170

PDF

Received on: 08/08/2019;                                                                Accepted on: 26/2/2020

Abstract: In this work, samples of zinc oxide nanoparticles doped by molybdenum (Zn1-xMoxO with 0 ≤ x ≤ 0.1) were prepared by using the wet co-precipitation method. The characterization of the prepared samples was carried out by means of X-ray powder diffraction (XRD). The samples reserved their hexagonal wurtzite structure with Mo doping and showed a decrease in the crystallite size up to x = 0.04 followed by a further increase. On the other hand, dielectric measurements were performed using an LCR meter. The effect of frequency and temperature on the dielectric properties such as the real and imaginary parts of dielectric constant ( and, respectively), dielectric loss (tan) and ac-conductivity () of Mo-doped zinc oxide samples, was studied in the frequency range (100 Hz - 1 MHz) and at temperatures (300 - 773 K). The values of room temperature dielectric parameters were found to be strongly dependent on the Mo-doping. However, the increase in temperature caused an enhancement in the values of the dielectric parameters, particularly at 773 K.

Keywords: Zinc oxide, XRD, Dielectric constants, Ac-conductivity.

 

References

[1] Liang, P., Cai, H., Yang, X., Li, H., Zhang, W., Xu, N., Sun, J. and Wu, J., Spectrochimica Acta, Part B: Atomic Spectroscopy, 125 (1) (2016) 18.

[2] Anta, J.A., Guillén, E. and Tena-Zaera, R., J. Phys. Chem. C, 116 (21) (2012) 11413.

[3] Basma, H., Rahal, H.T., Al-Mokdad, F., Romie, M. and Awad, R., Mater. Res. Express, 6 (7) (2019) 075001.

[4] Kumar, P., Joshi, R., Gaur, A., Kumar, L. and Asokan, K., Mater. Res. Express, 2 (4) (2015) 045901.

[5] Akhtari, F., Zorriasatein, S., Farahmandjou, M. and Elahi, S.M., Mater. Res. Express, 5 (6) (2018) 065015.

[6] Sharrouf, M., Awad, R., Marhaba, S. and El-Said-Bakeer, D., Nano, 11 (04) (2016) 1650042.‏‏

[7] Sundar, S.A. and John, N.J., IJEAS, 3 (3) (2016) 26.

[8] Belkhaoui, C., Mzabi, N. and Smaoui, H., Mater. Res. Bull., 111 (2019) 70.

[9] Boughalmi, R., Boukhachem, A., Gaied, I., Boubaker, K., Bouhafs, M. and Amlouk, M., Mat. Sci. Semicon. Proc., 16 (6) (2013) 1584.

[10] Ghosh, C.K., Malkhandi, S., Mitra, M.K. and Chattopadhyay, K.K., J. Phys. D, 41 (24) (2008) 245113.

[11] Farhat, S., Rekaby, M. and Awad, R., JSNM, 31 (9) (2018) 3051.

[12] Prodromakis, T. and Papavassiliou, C., Appl. Surf. Sci., 255 (15) (2009) 6989.

[13] Koops, C.G., Phys. Rev., 83 (1) (1951) 121.

[14] Thomas, N., Jithin, P.V., Sudheesh, V.D. and Sebastian, V., J. Ceramint., 43 (2017) 7305.

[15] Rajesh Kumar, B., Hymavathi, B. and Subba-Rao, T., Journal of Science: Advanced Materials and Devices, 3 (4) (2018) 433.

[16] Das, P.S. and Singh, G.P., J. Magn. Magn. Mater., 401 (2016) 918.

 [17] Zamiri, R., Kaushal, A., Rebelo, A. and Ferreira, J.M.F., Ceram. Int., 40 (1) (2014) 1635.

[18] Ashokkumar, M. and Muthukumaran, S., J. Lumin., 162 (2015) 97.

[19] Kingery, W.D. et al., "Introduction to Ceramics", (John Wiley, New York, 1975),  p. 913.

[20] Moulson, A.J. and Herbert, J.M., "Electroceramics: Materials, Properties, Applications", 2nd Ed., (John Wiley & Sons, Ltd., 2003). 

[21] Smyth, C.P., "Dielectric Behavior and Structure", (McGraw-Hill, NewYork, 1955).