JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Passively Q - Switched Linear Cavity IR Fibre Laser via Nonlinear Polarization Rotation

Fadi Z. Qamar

 Physics Department, Faculty of Sciences, Damascus University, Damascus, Syria.

Emails: fadiqamar@Hotmail.com

Doi: https://doi.org/10.47011/14.3.3

Cited by : Jordan J. Phys., 14 (3) (2021) 209-220

PDF

Received on: 29/04/2020;                                                               Accepted on: 22/8/2020

Abstract: Setup for self-starting passive Q-switch operation of IR fibre laser via nonlinear polarization rotation (NPR) was demonstrated for the first time for linear cavity. A Q-switched pulse duration of ~ 600 ns, a maximum peak power of ~16 W and an average power of 408 mW have been obtained at 223 kHz repetition rate for 5.1 W pump power from 1319 nm CW Nd: YAG laser launched to ~ 2.78 m unidirectional single-clad Tm-doped silica fibre linear cavity using only flat polarizer and feedback mirror to induce NPR. The dependence of the fibre laser output characteristics on the polarization angle of the polarizer is also reported. However, self induced passive Q-switching in linear fibre laser cavities is only observed in fibres with angled cleaved ends and with lengths that are around the optimum length for CW operation.

Keywords: IR fibre laser, Passive Q-switching, Nonlinear polarization rotation, Linear cavity, Ring cavity.

PACS: Fiber lasers, 42.55.Wd, Q-switching, 42.60.Gd.

 

References

[1] Delgado-Pinar, M., Diez, A., Cruz, J. L. and Andres, M.V., Laser Phys. Lett., 6 (2009) 139.

[2] Kuznetsov, A.G. and Babin, S.A., Laser Phys., 20 (2010) 1266.

[3] Chen, N.K., Feng, Z.Z. and Liaw, S.K., Laser Phys. Lett., 7 (2010) 363.

[4] Filippov, V.N., Starodumov, A.N. and Kir’yanov, A.V., Opt. Lett., 26 (2001) 343.

[5] Salam, S., Al-Masoodi, A.H.H., Al-Hiti, A.S., Al-Masoodi, Ab.H.H., Wang, P., Wong, W.R. and Harun, S.W., Optical Fiber Technology, 50 (2019) 256.

[6] Zulkipli, N.F., Jafry A.A.A., Apsari, R., Samsamnun, F.S.M., Batumalay, M., Khudus, M.I.M.A., Arof, H. and Harun, S.W., Optics & Laser Technology, 127 (2020) 106163.

[7] Huang, J.Y., Huang, S.C., Chang, H.L., Su, K.W., Chen, Y.F. and Huang, K.F., Opt. Express, 16 (2008) 3002.

[8] Zhou, D.P., Wei, L., Dong, B. and Liu, W.K., IEEE Photon. Technol. Lett., 22 (9) (2010) 9.

[9] Dong, B., Hao, J., Hu, J. and Liaw, C.Y., IEEE Photon., Technol. Lett., 22 (2010) 1853.

[10] Chernysheva, M., Mou, C., Arif, R., AlAraimi, M., Rümmeli, M., Turitsyn, S. and Rozhin, A., Scientific Reports, 6:24220 (2016) 1.

[11] Zulkifli, M.Z., Muhammad, F.D., Mohd Azri, M.F., Mohd Yusof, M.K., Hamdan, K.Z., Samsudin, S.A. and Yasin, M., Results in Physics, 16 (2020) 102949.

 [12] Luo, Z., Zhou, M., Weng, J., Huang, G., Xu, H., Ye, C. and Cai, Z., Opt. Lett., 35 (2010) 3709.

[13] Tsai, T.Y., Fang, Y.C., Lee, Z.C. and Tsao, H.X., Opt., Lett., 34 (2009) 2891.

[14] Kurkov, A.S., Sadovnikova, Ya.E., Marakulin, A.V. and Sholokhov, E.M., Laser Phys. Lett., 7 (2010) 795.

[15] Luo, Z.C., Liu, J.R., Wang, H.Y., Luo, A.P. and Xu, W.C., Laser Phys., 22 (2012) 203.

[16] Hamzah, A., Paul, M.C., Awang, N.A., Ahmad, H., Pal, M., Das, S., Ismail, M.A. and Harun, S.W., Opt. Laser Tech., 47 (2013) 22.

[17] Azooz, S.M., Harun, S.W., Ahmad, H., Halder, A., Paul, M.C., Das S. and Bhadra, S.K., Ukr. J. Phys. Opt., 16 (1) (2015) 37.

[18] Qamar, F.Z., Laser Phys., 28 (2018) 6.

[19] Lin, Q. and Agrawal, G.P., IEEE J. of Quant. Electron., 40 (7) (2004) 958.

[20] Feng, X., Tam, H. and Wai, P., Optics Express, 14 (18) (2006).

[21] Luo, Z., Luo, A., Xu, W., Song, C., Gao, Y. and Chen, W., Laser Physics Letters, 6 (8) (2009) 582.

[22] Loh, W.H., Optics Letters, 21 (10) (1996) 734.

[23] Barn1enkov, Y.O. and Kir'yanov, L.A.V., Optics Express, 12 (14) (2004) 3171.

[24] Kellou, A., Amroun, D. and Sanchez, F., Journal of Modem Optics, 45 (9) (1998) 1951.