JJP » JJP Issues
 Jordanian Journals
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address


Investigating the Effect of Nitro Groups on the Electronic Properties of Phenanthrene Compound

Haider O. Essaa and Satha M. Abbasb

 a Biology Department, Science College, Al-Qasim Green University, Al-Qasim Town, Babylon Province, 51013, Iraq.

b Chemistry and Physiology Department, Veterinary Medicine College, Al-Qasim Green University, Al-Qasim Town, Babylon Province, 51013, Iraq.


Corresponding Author: Haider O. Essa                Email: headeromran@yahoo.com

Doi: https://doi.org/10.47011/14.3.4

Cited by : Jordan J. Phys., 14 (3) (2021) 221-230


Received on: 13/05/2020;                                                      Accepted on: 13/9/2020

Abstract: Theoretical study for calculating the electronic structure of phenanthrene compound and its simplest derivatives with nitro groups in different positions was performed using density functional theory (DFT) based on the hybrid function of three parameters. Lee-Yang-Parr [B3LYP] with 6-31 [d, p] basis set was used to investigate the effect of nitro groups on the electronic properties of phenanthrene compound. All calculations were obtaind by employing the used method using the Gaussian 09 package of programs. The energy gaps, total energies, the energy of HOMO and LUMO, softness, dipole moment, Fermi level, molecular symmetry, electrochemical hardness, electron density, electrostatic potential surfaces and infrared spectra were calculated. The results showed that the electronic properties of phenanthrene molecule are affected by the added nitro group. The total energy, energy gap and the HOMO and LUMO energy decreased compared with the original molecule. The ionization potential (IP), electron affinity (EA) and Fermi level (Ef) are increased compared with the original molecule.

Keywords: B3LYP/DFT calculations, Phenanthrene molecule, Nitro group, Energy gap, Ionization potential.



[1] Danzon, M.A., “Air Quality Guidelines”, 2nd edition, (WHO Regional Office for Europe, Copenhagen, Denmark, 2000).

[2] Lerda, D., “Polycyclic aromatic hydrocarbons (PAHs) factsheet”, 4th edition, (European Union, 2011).

[3] Zhang, H.Z., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., OllisMason, K., Qiu, L., Crogan-Grundy, C., Tseng, B., Drewe, J. and Cai, S.X., J. Med. Chem., 48 (2005) 5215.

[4] Mattson, M.P., Brain Pathol., 10 (2000) 300.

[5] Singh, L., Varshney, J.G. and Agarwal, T., Food Chemistry, 199 (2016) 768.

[6] de Azeredo, S.O.F. and Figueroa-Villar, J.D., World Journal of Pharmacy and Pharmaceutical Sciences, 3 (11) (2014).

[7] Samimi, S.V., Akbari Rad, R. and Ghanizadeh, F., Iran J. Environ. Health Sci. Eng., 6 (1) (2009) 47.

[8] Guedouar, H., Aloui, F., Beltifa, A., Ben Mansour, H. and Ben Hassine, B., C. R. Chimie, 20 (2017) 841.

[9] Gümüş, A. and Gümüş, S., Macedonian Journal of Chemistry and Chemical Engineering, 36 (2) (2017) 239.

[10] Hinchliffe, A. and Soscun Machado, H.J., Int. J. Mol. Sci., 1 (2000) 8.

[11] de Andres, P.L., Guijarro, A. and Verges, J.A., “Instituto de Ciencia de Materiales de Madrid (CSIC)”, (28049 Madrid, Spain, 2018).

[12] Ju, K.-S. and Parales, R.E., Microbiol. Mol. Biol. Rev., 74 (2) (2010) 250.

[13] Irene, E.A., “Electronic Materials Science”, (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005).

[14] Fitts, D.D., “Principles of Quantum Mechanics As Applied to Chemistry and Chemical Physics”, (Cambridge University Press, New York, 2002).

[15] Rogers, D.W., “Computational Chemistry Using the PC”, 3d Edition, (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003).

[16] Reimers, R.J., “Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology”, (John Wiley & Sons, Inc., Hoboken, New Jersey, 2011).

[17] Jones, R.O., Reviews of Modern Physics, 87 (2015) 897.

[18] Sahni, V., “Quantal Density Functional Theory II: Approximation Methods and Applications”, (Springer Verilog, Berlin, Heidelberg, 2010).

[19] Stephens, P.J., Devlin, F.J., Chabalowski, C.F. and Frisch, M.J., The Journal of Physical Chemistry, 98 (43) (1994) 11624.

[20] Roy, D.D., Todd, A.K. and John, M.M., “Gauss View 5.0.8. Gaussian”, (Gaussian, Inc., Wallingford, 2009).

[21] Frisch, M.J., Trucks, G.W., Schlegel, H.B. et al., “Gaussian 09, Revision A.02", (Gaussian, Inc., PA, Wallingford CT, 2009).

[22] Engelberts, J., Havenith, R., Van Lenthe, J., Jenneskens, L. and Fowler, P., Inorg. Chem., 44 (2005) 52266.

[23] Santos, J.C.J., Andres, A., Aizman, P. and Fuentealba, J., Chem. Theory Comput., 1 (2005) 83.

[24] Santos, J.C., Tiznado, W., Contreras, R. and Fuentealba, P., J. Chem. Phys., 120 (2004) 1670.

[25] Nagarajan, V. and Chandiramouli, R., International Journal of Chem. Tech. Research, 6 (1) (2014) 21.

[26] Zarkadoula, E.N., Sharma, S., Dewhurst, J.K., Gross, E.K.U. and Lathiotakis, N.N., Physical Review A, 85 (2012) 1.

[27] Zhuo, L.G., Liao, W. and Yu, Z.X., Asian Journal of Organic Chemistry, 1 (2012) 336.

[28] Zhan, C., Nichols, J.A. and Dixon, D.A., Journal of Physics and Chemistry A, 107 (2003) 4184.

[29] Karzazi, Y., Belghiti1, M.E., El-Hajjaji, F. and Hammouti, B., Journal Mater. Environ. Sci., 7 (10) (2016) 3916.

[30] Hinchliffe, A., “Molecular Modelling”, (John Wiley & Sons, Ltd., England, 2003).

[31] Mueller, M., “Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations”, (Kluwer Academic/ Plenum Publishers, New York, 2001).

[32] Abel Kolawole, O. and Banjo, S., Analytical & Bioanalytical Electrochemistry, 10 (1) (2018) 136.

 [33] Reyes, R.V. and Aria, A., Journal Ecl. Quim., Sao Paulo, 33 (3) (2008) 69.

[34] Cramer, C.J., “Essentials of Computational Chemistry”, (John Wiley & Sons, Ltd., USA, 2004).

[35] Sadasivam, K. and Kumaresan, R., Computational and Theoretical Chemistry, 963 (2011) 227.