JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

The Status of Green Synthesis of Silver Nanoparticles Using Plant Extracts during Last Fifteen Years

Banaz S. Hajia  and  Azeez A. Barzinjyb,c

 a Department of Physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq.

b Scientific Research Center, Soran University, Kurdistan Region, Iraq

c Department of Physics Education, Faculty of Education, Tishk International University-Erbil, Kurdistan Region, Iraq.

Corresponding Author:  Azeez Abdullah Barzinjy                                  Email: azeez.azeez@su.edu.krd

Doi: https://doi.org/10.47011/15.5.1
 

Cited by : Jordan J. Phys., 15 (5) (2022) 429-444

PDF

Received on: 01/07/2022;                                                       Accepted on: 17/08/2022

Abstract: Nanoparticles (NPs) are tiny particles with their dimensions ranging between1and100 nm. These are gaining cumulative attention owing to their vast use in different fields of applications. There are three main methods for synthesizing NPs; namely, physical, chemical and biological methods. Physical methods consume a lot of energy and time, require expensive vacuum systems and high temperatures and on top of all, they are not environmentally friendly. Chemical methods, in general, are expensive, increase the particle toxicity and perhaps harm human health and the environment. In addition, hazardous chemicals gather on the top of NPs and confine their applications. Therefore, green method is an alternative replacement to the traditional chemical and physical methods for synthesizing NPs. The existing phytochemicals, for instance in plant extracts, own a remarkably high ability for reducing metal ions within a short time comparing with other microorganisms, which require a longer incubation period. This study is concentrating on green synthesis of silver (Ag) NPs, owing to the significance of Ag NPs whose optical properties depend on their size and shape. In addition, Ag NPs possess numerous applications, especially in solar cells, water treatment and medicine. This review aims to highlight the remarkable growth of green synthesis of Ag NPs, in terms of publications, citations, active and productive researchers, targeting journals and the eminent countries in this regard. This review, also, is highlights the most utilized plants for producing Ag NPs in fourteen years; i.e., 2007-2021.This review, also, evaluating the most acceptable proposed mechanism for biosynthesizing Ag NPs using plant extracts. We believe that this review article will facilitate and brighten the road in front of researchers who want to initiate their study with the biosynthesis of Ag NPs from plant extracts.

Keywords: Silver nanoparticles, Green synthesis, Plant extracts, Stabilizing agents, Reducing agents.

 

References

[1] Ju-Nam, Y. and Lead, J.R., Science of the Total Environment, 400 (1-3) (2008) 396.

[2] Kareem, M. et al., IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2020).

[3] Austin, L.A. et al., Archives of Toxicology, 88 (7) (2014) 1391.

[4] Ramos, M.A.D.S. et al., International Journal of Nanomedicine, 13 (2018) 1179.

[5] Chen, F. et al., Journal of Colloid and Interface Science, 521 (2018) 261.

[6] Al-Shabib, N.A. et al., Scientific Reports, 6 (1) (2016) 1.

[7] Wu, K. et al., International Journal of Nanomedicine, 10 (2015) 7241.

[8] Van Hest, J. et al., Journal of Microscopy, 274 (1) (2019) 13.

[9] Zhang, K. et al., Journal of Colloid and Interface Science, 537 (2019) 316.

[10] Jafari, S. et al., Biomedicine & Pharmacotherapy, 109 (2019) 1100.

[11] Liu, J. et al., Optical Materials, 89 (2019)  100.

[12] Sharma, A. et al., Metals, 8 (5) (2018) 347.

[13] Mihyun, L., Zenobi-Wong, M. and Chang, J., "Google Patents", (2019).

[14] Fantino, E. et al., Advanced Materials, 28 (19) (2016) 3712.

[15] Wongrat, E. et al., Materials Research Innovations, 23 (2) (2019) 66.

[16] Xie, H. et al., Materials Letters, 234 (2019) 311.

[17] Morsi, R.E. et al., International Journal of Biological Macromolecules, 97 (2017) 264.

[18] Veisi, H., Azizi, S. and Mohammadi, P., Journal of Cleaner Production, 170 (2018)  1536.

[19] Choudhary, M.K., Kataria, J. and Sharma, S., Journal of Cleaner Production, 198 (2018) 882.

[20] Barzinjy, A. et al., Jordan J. Phys., 13 (2) (2020) 123.

[21] Herizchi, R. et al., Artificial Cells, Nanomedicine and Biotechnology, 44 (2) (2016) 596.

[22] Barzinjy, A. et al., Jordan J. Phys., 12 (1) (2019) 45.

[23] Wang, L., Hasanzadeh Kafshgari, M. and Meunier, M., Advanced Functional Materials, 30 (51) (2020) 2005400.

[24] Coronado, E.A., Encina, E.R. and Stefani, F.D., Nanoscale, 3 (10) (2011) 4042.

[25] Yan, Y. et al., Wear, 267 (5-8) (2009) 683.

[26] Astruc, D., Lu, F. and Aranzaes, J.R., Angewandte Chemie - International Edition, 44 (48) (2005) 7852.

[27] Syafiuddin, A. et al., Journal of the Chinese Chemical Society, 64 (7) (2017) 732.

[28] Atwater, H.A. and Polman, A., Materials for sustainable energy: A collection of peer-reviewed research and review articles from Nature Publishing Group, (2011) 1.

[29] De, M., Ghosh, P.S. and Rotello, V.M., Advanced Materials, 20 (22) (2008) 4225.

[30] Rafique, M. et al., Artificial Cells, Nanomedicine and Biotechnology, 45 (7) (2017) 1272.

[31] Khayati, G.R. and Janghorban, K., Advanced Powder Technology, 23 (6) (2012) 808.

[32] Khayati, G. and Janghorban, K., Advanced Powder Technology, 23 (3) (2012) 393.

[33] Verma, S. et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527 (2017) 23.

[34] Boutinguiza, M. et al., Materials Letters, 231 (2018) 126.

[35] Arboleda, D.M. et al., Materials Characterization, 140 (2018) 320.

[36] Simchi, A. et al., Materials & Design, 28 (3) (2007) 850.

[37] Malekzadeh, M. and Halali, M., Chemical Engineering Journal, 168 (1) (2011) 441.

[38] Hui, K. et al., Acta Materialia, 64 (2014)  326.

[39] Raghavendra, G.M. et al., Carbohydrate Polymers, 152 (2016) 558.

[40] Jung, J. et al., International Journal of Biological Macromolecules, 107 (2018) 2285.

[41] Javey, A. and Dai, H., Journal of the American Chemical Society, 127 (34) (2005) 11942.

[42] Wu, J. et al., Nanoscale, 6 (2) (2014) 749.

[43] Shih, S.-J. and Chien, I.-C., Powder Technology, 237 (2013) 436.

[44] Jang, H.D. et al., Aerosol Science and Technology, 49 (7) (2015) 538.

[45] Keskar, M. et al., Nanoscale Advances, 1(2) (2019) 627.

[46] Juby, K. et al., Carbohydrate Polymers, 89 (3) (2012) 906.

[47] Ashkarran, A.A., Current Applied Physics, 10 (6) (2010) 1442.

[48] Kumar, P. et al., Advanced Science Letters, 22 (1) (2016) 3.

[49] Zhang, H. et al., Journal of Materials Science, 52 (6) (2017) 3375.

[50] Manikprabhu, D. and K. Lingappa, Journal of Pharmacy Research, 6 (2) (2013) 255.

[51] Vijayan, R., Joseph, S. and Mathew, B., Bionanoscience, 8 (1) (2018) 105.

[52] De Yoreo, J.J. and Vekilov, P.G., Reviews in Mineralogy and Geochemistry, 54 (1) (2003) 57.

[53] Khan, M. et al., Dalton Transactions, 47 (35) (2018) 11988.

[54] Jadalannagari, S. et al., Applied Nanoscience, 4 (2) (2014) 133.

[55] Ueno, S. et al., Nanomaterials, 5 (2) (2015) 386.

[56] Kumar, K.A. et al., Applied Surface Science, 472 (2019) 40.

[57] Lee, S.J. et al., Applied Surface Science, 432 (2018) 317.

[58] Wang, Y. et al., Journal of the American Chemical Society, 135 (5) (2013) 1941.

[59] Dugandžić, V. et al., Analytica Chimica Acta, 946 (2016) 73.

[60] Singha, D., Barman, N. and Sahu, K., Journal of Colloid and Interface Science, 413 (2014) 37.

[61] Matsuhisa, N. et al., Nature Materials, 16 (8) (2017) 834.

[62] Ciobanu, C.S. et al., BioMed Research International, 2013 (2013) 1.

[63] Kuzminova, A. et al., Surface and Coatings Technology, 294 (2016) 225.

[64] Wani, I.A. et al., Materials Research Bulletin, 45 (8) (2010) 1033.

[65] Chen, D. et al., Journal of Materials Science: Materials in Electronics, 22 (1) (2011) 6.

[66] Guzmán, M.G., Dille, J. and Godet, S., Int J. Chem. Biomol. Eng., 2 (3) (2009) 104.

[67] Khaydarov, R.A. et al., Journal of Nanoparticle Research, 11 (5) (2009) 1193.

[68] Chitsazi, M.R. et al., Artificial Cells, Nanomedicine and Biotechnology, 44 (1) (2016) 328.

[69] Amin, S. et al., Current Analytical Chemistry, 17 (4) (2021) 438.

[70] Saratale, R.G. et al., Colloids and Surfaces B: Biointerfaces, 170 (2018) 20.

[71] Saravanan, A. et al., Chemosphere, 1 (2020) 128580.

[72] Ovais, M. et al., Applied Microbiology and Biotechnology, 102 (16) (2018) 6799.

[73] Vijayaraghavan, K. and Ashokkumar, T., Journal of Environmental Chemical Engineering, 5 (5) (2017) 4866.

[74] Shamaila, S. et al., Applied Materials Today, 5 (2016) 150.

[75] Barzinjy, A.A. et al., Eurasian Journal of Science & Engineering, 4 (3) (2019) 74.

[76] Azeez, H.H. and Barzinjy, A.A., Desalination Water Treat., 190 (2020) 179.

[77] Barzinjy, A.A. et al., Inorganic and Nano-metal Chemistry, 50 (8) (2020) 620.

[78] Barzinjy, A.A. and Azeez, H.H., SN Applied Sciences, 2 (5) (2020) 1.

[79] Barzinjy, A.A. et al., Current Organic Synthesis, 17 (7) (2020) 558.

[80] Barzinjy, A.A. et al., Journal of Materials Science: Materials in Electronics, 31 (2020)  11303.

[81] Barzinjy, A.A. et al., Micro- & Nano-Letters, 15 (6) (2020) 415.

[82] Nasrollahzadeh, M. et al., Materials Research Bulletin, 102 (2018) 24.

[83] Sajadi, S.M. et al., ChemistrySelect, 3 (43) (2018) 12274.

[84] Shnawa, B.H. et al., Emergent Materials, 1 (2021) 1.

[85] Talabani, R.F. et al., Nanomaterials, 11 (9) (2021) 2421.

[86] Riedel, S. and Kaupp, M., Coordination Chemistry Reviews, 253 (5-6) (2009) 606.

[87] Wang, M.Y. et al., Materials Letters, 107 (2013) 311.

[88] Wu, C. et al., Frontiers in Environmental Science, 9 (2021) 181.

[89] Al-Ibrashy, M. and Gaber, T., Built and Natural Environment Research Papers, 1 (2011) 63.

[90] Natsuki, J., Natsuki, T. and Hashimoto, Y., Int. J. Mater. Sci. Appl., 4 (5) (2015) 325.

[91] Geoprincy, G. et al., Asian Journal of Pharmaceutical and Clinical Research, 6 (1) (2013) 8.

[92] Gour, A. and Jain, N.K., Artificial Cells, Nanomedicine and Biotechnology, 47 (1) (2019) 844.

[93] El Shafey, A.M., Green Processing and Synthesis, 9 (1) (2020) 304.

[94] Frey, B.S. and Rost, K., Journal of Applied Economics, 13 (1) (2010) 1.

[95] Kumar, A. et al., Nature Materials, 7 (3) (2008) 236.

[96] Tolaymat, T.M. et al., Science of the Total Environment, 408 (5) (2010) 999.

[97] Shao, W. et al., ACS Applied Materials & Interfaces, 7 (12) (2015) 6966.

[98] Richter, A.P. et al., Nature Nanotechnology, 10 (9) (2015) 817.

[99] Akaighe, N. et al., Environmental Science & Technology, 45 (9) (2011) 3895.

[100] Meho, L.I. and Rogers, Y., Journal of the American Society for Information Science and Technology, 59 (11) (2008) 1711.

[101] Jadoun, S. et al., Environmental Chemistry Letters, 19 (1) (2021) 355.

[102] Martínez-Cabanas, M. et al., Nanomaterials, 11 (7) (2021) 1679.

[103] Marslin, G. et al., Materials, 11 (6) (2018) 940.

[104] Javed, R. et al., Journal of Nanobiotechnology, 18 (1) (2020) 1.

[105] Behravan, M. et al., International Journal of Biological Macromolecules, 124 (2019) 148.

[106] Sharma, P. et al., Materials Chemistry and Physics, 258 (2021) 123899.

[107] Perala, S.R.K. and Kumar, S., Langmuir, 29 (31) (2013) 9863.

[108] Nate, Z. et al., MRS Advances, 3 (42-43) (2018) 2505.

[109] Chugh, D., Viswamalya, V. and Das, B., Journal of Genetic Engineering and Biotechnology, 19 (1) (2021) 1.

[110] Abomuti, M.A. et al., Biology, 10 (11) (2021) 1075.

[111] Marișca, O.T. and Leopold, N., Materials, 12 (7) (2019) 1131.

[112] Basnet, P. et al., Journal of Photochemistry and Photobiology B: Biology, 183 (2018) 201.

[113] Castro, L. et al., Process Biochemistry, 46 (5) (2011) 1076.

[114] Shankar, S.S. et al., Nature Materials, 3 (7) (2004) 482.

[115] Bhaumik, J. et al., ACS Biomaterials Science & Engineering, 1 (6) (2015) 382.

[116] Kumar, P., Selvi, S.S. and Govindaraju, M., Applied Nanoscience, 3 (6) (2013) 495.

[117] Prakash, P. et al., Colloids and Surfaces B: Biointerfaces, 108 (2013) 255.

[118] Muniyappan, N. and Nagarajan, N., Process Biochemistry, 49 (6) (2014) 1054.

[119] Singh, A. et al., Biotechnology Reports, 25 (2020) 00427.

[120] Singh, G. et al., Journal of Microbiology and Biotechnology, 24 (10) (2014) 1354.

[121] Yousefzadi, M., Rahimi, Z. and Ghafori, V., Materials Letters, 137 (2014) 1.

[122] Salari, Z. et al., Journal of Saudi Chemical Society, 20 (4) (2016) 459.

[123] Paulkumar, K. et al., The Scientific World Journal, 1 (2014) 2014.

[124] Medda, S. et al., Applied Nanoscience, 5 (7) (2015) 875.

[125] Anandalakshmi, K., Venugobal, J. and Ramasamy, V., Applied Nanoscience, 6 (3) (2016) 399.

[126] Raja, S., Ramesh, V. and Thivaharan, V., Arabian Journal of Chemistry, 10 (2) (2017) 253.

[127] Ali, K. et al., Plos One, 10 (7) (2015) 0131178.

[128] Jain, N. et al., Plos One, 10 (7) (2015) 0134337.

[129] Keskin, S. et al. Journal of Nano Research, 40 (2016) 120.

[130] Allafchian, A. et al., Journal of Nanostructure in Chemistry, 6 (2) (2016) 129.

[131] de Aragao, A.P. et al., Arabian Journal of Chemistry, 12 (8) (2019) 4182.

[132] Sivagnanam, S.P. et al., Green Processing and Synthesis, 6 (2) (2017) 147.

[133] Hamedi, S., Shojaosadati, S.A. and Mohammadi, A., Journal of Photochemistry and Photobiology B: Biology, 167 (2017) 36.

[134] Francis, S. et al., Artificial Cells, Nanomedicine and Biotechnology, 46 (4) (2018) 795.

[135] Ramkumar, V.S. et al., Biotechnology Reports, 14 (2017) 1.

[136] Mohanta, Y.K. et al., Frontiers in Molecular Biosciences, 4 (2017) 14.

[137] Gallucci, M.N. et al., Materials Letters, 197 (2017) 98.

[138] Aboelfetoh, E.F., El-Shenody, R.A. and Ghobara, M.M., Environmental Monitoring and Assessment, 189 (7) (2017) 1.

[139] Baghayeri, M. et al., Applied Organometallic Chemistry, 32 (2) (2018) 4057.

[140] Kathiraven, T. et al., Applied Nanoscience, 5 (4) (2015) 499.

[141] He, Y. et al., RSC Advances, 7 (63) (2017) 39842.

 [142] Ajitha, B. et al., Advanced Powder Technology, 29 (1) (2018) 86.

[143] He, Y. et al., New Journal of Chemistry, 42 (4) (2018) 28828.