The Status of
Green Synthesis
of Silver
Nanoparticles
Using Plant
Extracts during
Last Fifteen
Years
Banaz S. Hajia
and Azeez
A. Barzinjyb,c
a
Department of
Physics, College
of Education,
Salahaddin
University-Erbil,
Kurdistan
Region, Iraq.
b
Scientific
Research Center,
Soran
University,
Kurdistan
Region, Iraq
c
Department of
Physics
Education,
Faculty of
Education, Tishk
International
University-Erbil,
Kurdistan
Region, Iraq.
Corresponding
Author:
Azeez Abdullah
Barzinjy
Email:
azeez.azeez@su.edu.krd
Doi: https://doi.org/10.47011/15.5.1
Cited by :
Jordan J. Phys.,
15 (5) (2022)
429-444
PDF
Received on:
01/07/2022;
Accepted
on:
17/08/2022
Abstract:
Nanoparticles
(NPs)
are tiny
particles
with
their
dimensions
ranging
between1and100
nm.
These
are
gaining
cumulative
attention
owing to
their
vast use
in
different
fields
of
applications.
There
are
three
main
methods
for
synthesizing
NPs;
namely,
physical,
chemical
and
biological
methods.
Physical
methods
consume
a lot of
energy
and
time,
require
expensive
vacuum
systems
and high
temperatures
and on
top of
all,
they are
not
environmentally
friendly.
Chemical
methods,
in
general,
are
expensive,
increase
the
particle
toxicity
and
perhaps
harm
human
health
and the
environment.
In
addition,
hazardous
chemicals
gather
on the
top of
NPs and
confine
their
applications.
Therefore,
green
method
is an
alternative
replacement
to the
traditional
chemical
and
physical
methods
for
synthesizing
NPs. The
existing
phytochemicals,
for
instance
in plant
extracts,
own a
remarkably
high
ability
for
reducing
metal
ions
within a
short
time
comparing
with
other
microorganisms,
which
require
a longer
incubation
period.
This
study is
concentrating
on green
synthesis
of
silver
(Ag)
NPs,
owing to
the
significance
of Ag
NPs
whose
optical
properties
depend
on their
size and
shape.
In
addition,
Ag NPs
possess
numerous
applications,
especially
in solar
cells,
water
treatment
and
medicine.
This
review
aims to
highlight
the
remarkable
growth
of green
synthesis
of Ag
NPs, in
terms of
publications,
citations,
active
and
productive
researchers,
targeting
journals
and the
eminent
countries
in this
regard.
This
review,
also, is
highlights
the most
utilized
plants
for
producing
Ag NPs
in
fourteen
years;
i.e.,
2007-2021.This
review,
also,
evaluating
the most
acceptable
proposed
mechanism
for
biosynthesizing
Ag NPs
using
plant
extracts.
We
believe
that
this
review
article
will
facilitate
and
brighten
the road
in front
of
researchers
who want
to
initiate
their
study
with the
biosynthesis
of Ag
NPs from
plant
extracts.
Keywords:
Silver
nanoparticles,
Green
synthesis,
Plant
extracts,
Stabilizing
agents,
Reducing
agents.
References
[1]
Ju-Nam, Y. and
Lead, J.R.,
Science of the
Total
Environment, 400
(1-3) (2008)
396.
[2]
Kareem, M. et
al., IOP
Conference
Series:
Materials
Science and
Engineering,
(IOP Publishing,
2020).
[3]
Austin, L.A. et
al., Archives of
Toxicology, 88
(7) (2014)
1391.
[4]
Ramos, M.A.D.S.
et al.,
International
Journal of
Nanomedicine, 13
(2018) 1179.
[5]
Chen, F. et al.,
Journal of
Colloid and
Interface
Science, 521
(2018) 261.
[6]
Al-Shabib, N.A.
et al.,
Scientific
Reports, 6
(1) (2016)
1.
[7]
Wu, K. et al.,
International
Journal of
Nanomedicine, 10
(2015) 7241.
[8]
Van Hest, J. et
al., Journal of
Microscopy, 274
(1) (2019)
13.
[9]
Zhang, K. et
al., Journal of
Colloid and
Interface
Science, 537
(2019) 316.
[10]
Jafari, S. et
al., Biomedicine
&
Pharmacotherapy,
109 (2019) 1100.
[11]
Liu, J. et al.,
Optical
Materials, 89
(2019) 100.
[12]
Sharma, A. et
al., Metals, 8
(5) (2018) 347.
[13]
Mihyun, L.,
Zenobi-Wong, M.
and Chang, J.,
"Google
Patents",
(2019).
[14]
Fantino, E. et
al., Advanced
Materials, 28
(19) (2016)
3712.
[15]
Wongrat, E. et
al., Materials
Research
Innovations, 23
(2) (2019) 66.
[16]
Xie, H. et al.,
Materials
Letters, 234
(2019) 311.
[17]
Morsi, R.E. et
al.,
International
Journal of
Biological
Macromolecules,
97 (2017) 264.
[18]
Veisi, H., Azizi,
S. and Mohammadi,
P., Journal of
Cleaner
Production, 170
(2018) 1536.
[19]
Choudhary, M.K.,
Kataria, J. and
Sharma, S.,
Journal of
Cleaner
Production, 198
(2018) 882.
[20]
Barzinjy, A. et
al., Jordan J.
Phys., 13 (2)
(2020) 123.
[21]
Herizchi, R. et
al., Artificial
Cells,
Nanomedicine and
Biotechnology,
44 (2) (2016)
596.
[22]
Barzinjy, A. et
al., Jordan J.
Phys., 12 (1)
(2019) 45.
[23]
Wang, L.,
Hasanzadeh
Kafshgari, M.
and Meunier, M.,
Advanced
Functional
Materials, 30
(51) (2020)
2005400.
[24]
Coronado, E.A.,
Encina, E.R. and
Stefani, F.D.,
Nanoscale, 3
(10) (2011)
4042.
[25]
Yan, Y. et al.,
Wear, 267 (5-8)
(2009)
683.
[26]
Astruc, D., Lu,
F. and Aranzaes,
J.R., Angewandte
Chemie -
International
Edition, 44 (48)
(2005) 7852.
[27]
Syafiuddin, A.
et al., Journal
of the Chinese
Chemical
Society, 64 (7)
(2017) 732.
[28]
Atwater, H.A.
and Polman, A.,
Materials for
sustainable
energy: A
collection of
peer-reviewed
research and
review articles
from Nature
Publishing
Group, (2011) 1.
[29]
De, M., Ghosh,
P.S. and
Rotello, V.M.,
Advanced
Materials, 20
(22) (2008)
4225.
[30]
Rafique, M. et
al., Artificial
Cells,
Nanomedicine and
Biotechnology,
45 (7) (2017)
1272.
[31]
Khayati, G.R.
and Janghorban,
K., Advanced
Powder
Technology, 23
(6) (2012) 808.
[32]
Khayati, G. and
Janghorban, K.,
Advanced Powder
Technology, 23
(3) (2012) 393.
[33]
Verma, S. et
al., Colloids
and Surfaces A:
Physicochemical
and Engineering
Aspects, 527
(2017) 23.
[34]
Boutinguiza, M.
et al.,
Materials
Letters, 231
(2018) 126.
[35]
Arboleda, D.M.
et al.,
Materials
Characterization,
140 (2018) 320.
[36]
Simchi, A. et
al., Materials &
Design, 28 (3)
(2007) 850.
[37]
Malekzadeh, M.
and Halali, M.,
Chemical
Engineering
Journal, 168 (1)
(2011) 441.
[38]
Hui, K. et al.,
Acta Materialia,
64 (2014) 326.
[39]
Raghavendra,
G.M. et al.,
Carbohydrate
Polymers, 152
(2016) 558.
[40]
Jung, J. et al.,
International
Journal of
Biological
Macromolecules,
107 (2018) 2285.
[41]
Javey, A. and
Dai, H., Journal
of the American
Chemical
Society, 127
(34) (2005)
11942.
[42]
Wu, J. et al.,
Nanoscale, 6 (2)
(2014) 749.
[43]
Shih, S.-J. and
Chien, I.-C.,
Powder
Technology, 237
(2013) 436.
[44]
Jang, H.D. et
al., Aerosol
Science and
Technology, 49
(7) (2015) 538.
[45]
Keskar, M. et
al., Nanoscale
Advances, 1(2)
(2019) 627.
[46]
Juby, K. et al.,
Carbohydrate
Polymers, 89 (3)
(2012) 906.
[47]
Ashkarran, A.A.,
Current Applied
Physics, 10 (6)
(2010) 1442.
[48]
Kumar, P. et
al., Advanced
Science Letters,
22 (1) (2016) 3.
[49]
Zhang, H. et
al., Journal of
Materials
Science, 52 (6)
(2017) 3375.
[50]
Manikprabhu, D.
and K. Lingappa,
Journal of
Pharmacy
Research, 6 (2)
(2013) 255.
[51]
Vijayan, R.,
Joseph, S. and
Mathew, B.,
Bionanoscience,
8 (1) (2018)
105.
[52]
De Yoreo, J.J.
and Vekilov,
P.G., Reviews in
Mineralogy and
Geochemistry, 54
(1) (2003) 57.
[53]
Khan, M. et al.,
Dalton
Transactions, 47
(35) (2018)
11988.
[54]
Jadalannagari,
S. et al.,
Applied
Nanoscience, 4
(2) (2014) 133.
[55]
Ueno, S. et al.,
Nanomaterials, 5
(2) (2015) 386.
[56]
Kumar, K.A. et
al., Applied
Surface Science,
472 (2019) 40.
[57]
Lee, S.J. et
al., Applied
Surface Science,
432 (2018) 317.
[58]
Wang, Y. et al.,
Journal of the
American
Chemical
Society, 135 (5)
(2013) 1941.
[59]
Dugandžić, V. et
al., Analytica
Chimica Acta,
946 (2016) 73.
[60]
Singha, D.,
Barman, N. and
Sahu, K.,
Journal of
Colloid and
Interface
Science, 413
(2014) 37.
[61]
Matsuhisa, N. et
al., Nature
Materials, 16
(8) (2017) 834.
[62]
Ciobanu, C.S. et
al., BioMed
Research
International,
2013 (2013) 1.
[63]
Kuzminova, A. et
al., Surface and
Coatings
Technology, 294
(2016) 225.
[64]
Wani, I.A. et
al., Materials
Research
Bulletin, 45 (8)
(2010) 1033.
[65]
Chen, D. et al.,
Journal of
Materials
Science:
Materials in
Electronics, 22
(1) (2011) 6.
[66]
Guzmán, M.G.,
Dille, J. and
Godet, S., Int
J. Chem. Biomol.
Eng., 2 (3)
(2009) 104.
[67]
Khaydarov, R.A.
et al., Journal
of Nanoparticle
Research, 11 (5)
(2009) 1193.
[68]
Chitsazi, M.R.
et al.,
Artificial
Cells,
Nanomedicine and
Biotechnology,
44 (1) (2016)
328.
[69]
Amin, S. et al.,
Current
Analytical
Chemistry, 17
(4) (2021) 438.
[70]
Saratale, R.G.
et al., Colloids
and Surfaces B:
Biointerfaces,
170 (2018) 20.
[71]
Saravanan, A. et
al.,
Chemosphere, 1
(2020) 128580.
[72]
Ovais, M. et
al., Applied
Microbiology and
Biotechnology,
102 (16) (2018)
6799.
[73]
Vijayaraghavan,
K. and
Ashokkumar, T.,
Journal of
Environmental
Chemical
Engineering, 5
(5) (2017) 4866.
[74]
Shamaila, S. et
al., Applied
Materials Today,
5 (2016) 150.
[75]
Barzinjy, A.A.
et al., Eurasian
Journal of
Science &
Engineering, 4
(3) (2019) 74.
[76]
Azeez, H.H. and
Barzinjy, A.A.,
Desalination
Water Treat.,
190 (2020) 179.
[77]
Barzinjy, A.A.
et al.,
Inorganic and
Nano-metal
Chemistry, 50
(8) (2020) 620.
[78]
Barzinjy, A.A.
and Azeez, H.H.,
SN Applied
Sciences, 2 (5)
(2020) 1.
[79]
Barzinjy, A.A.
et al., Current
Organic
Synthesis, 17
(7) (2020) 558.
[80]
Barzinjy, A.A.
et al., Journal
of Materials
Science:
Materials in
Electronics, 31
(2020) 11303.
[81]
Barzinjy, A.A.
et al., Micro- &
Nano-Letters, 15
(6) (2020) 415.
[82]
Nasrollahzadeh,
M. et al.,
Materials
Research
Bulletin, 102
(2018) 24.
[83]
Sajadi, S.M. et
al.,
ChemistrySelect,
3 (43) (2018)
12274.
[84]
Shnawa, B.H. et
al., Emergent
Materials, 1
(2021) 1.
[85]
Talabani, R.F.
et al.,
Nanomaterials,
11 (9) (2021)
2421.
[86]
Riedel, S. and
Kaupp, M.,
Coordination
Chemistry
Reviews, 253
(5-6) (2009)
606.
[87]
Wang, M.Y. et
al., Materials
Letters, 107
(2013) 311.
[88]
Wu, C. et al.,
Frontiers in
Environmental
Science, 9
(2021) 181.
[89]
Al-Ibrashy, M.
and Gaber, T.,
Built and
Natural
Environment
Research Papers,
1 (2011) 63.
[90]
Natsuki, J.,
Natsuki, T. and
Hashimoto, Y.,
Int. J. Mater.
Sci. Appl., 4
(5) (2015) 325.
[91]
Geoprincy, G. et
al., Asian
Journal of
Pharmaceutical
and Clinical
Research, 6 (1)
(2013) 8.
[92]
Gour, A. and
Jain, N.K.,
Artificial
Cells,
Nanomedicine and
Biotechnology,
47 (1) (2019)
844.
[93]
El Shafey, A.M.,
Green Processing
and Synthesis, 9
(1) (2020) 304.
[94]
Frey, B.S. and
Rost, K.,
Journal of
Applied
Economics, 13
(1) (2010) 1.
[95]
Kumar, A. et
al., Nature
Materials, 7 (3)
(2008) 236.
[96]
Tolaymat, T.M.
et al., Science
of the Total
Environment, 408
(5) (2010) 999.
[97]
Shao, W. et al.,
ACS Applied
Materials &
Interfaces, 7
(12) (2015)
6966.
[98]
Richter, A.P. et
al., Nature
Nanotechnology,
10 (9) (2015)
817.
[99]
Akaighe, N. et
al.,
Environmental
Science &
Technology, 45
(9) (2011) 3895.
[100]
Meho, L.I. and
Rogers, Y.,
Journal of the
American Society
for Information
Science and
Technology, 59
(11) (2008)
1711.
[101]
Jadoun, S. et
al.,
Environmental
Chemistry
Letters, 19 (1)
(2021) 355.
[102]
Martínez-Cabanas,
M. et al.,
Nanomaterials,
11 (7) (2021)
1679.
[103]
Marslin, G. et
al., Materials,
11 (6) (2018)
940.
[104]
Javed, R. et
al., Journal of
Nanobiotechnology,
18 (1) (2020) 1.
[105]
Behravan, M. et
al.,
International
Journal of
Biological
Macromolecules,
124 (2019) 148.
[106]
Sharma, P. et
al., Materials
Chemistry and
Physics, 258
(2021) 123899.
[107]
Perala, S.R.K.
and Kumar, S.,
Langmuir, 29
(31) (2013)
9863.
[108]
Nate, Z. et al.,
MRS Advances, 3
(42-43) (2018)
2505.
[109]
Chugh, D.,
Viswamalya, V.
and Das, B.,
Journal of
Genetic
Engineering and
Biotechnology,
19 (1) (2021) 1.
[110]
Abomuti, M.A. et
al., Biology, 10
(11) (2021)
1075.
[111]
Marișca,
O.T. and
Leopold, N.,
Materials, 12
(7) (2019) 1131.
[112]
Basnet, P. et
al., Journal of
Photochemistry
and Photobiology
B: Biology, 183
(2018) 201.
[113]
Castro, L. et
al., Process
Biochemistry, 46
(5) (2011) 1076.
[114]
Shankar, S.S. et
al., Nature
Materials, 3 (7)
(2004) 482.
[115]
Bhaumik, J. et
al., ACS
Biomaterials
Science &
Engineering, 1
(6) (2015) 382.
[116]
Kumar, P.,
Selvi, S.S. and
Govindaraju, M.,
Applied
Nanoscience, 3
(6) (2013) 495.
[117]
Prakash, P. et
al., Colloids
and Surfaces B:
Biointerfaces,
108 (2013) 255.
[118]
Muniyappan, N.
and Nagarajan,
N., Process
Biochemistry, 49
(6) (2014) 1054.
[119]
Singh, A. et
al.,
Biotechnology
Reports, 25
(2020) 00427.
[120]
Singh, G. et
al., Journal of
Microbiology and
Biotechnology,
24 (10) (2014)
1354.
[121]
Yousefzadi, M.,
Rahimi, Z. and
Ghafori, V.,
Materials
Letters, 137
(2014) 1.
[122]
Salari, Z. et
al., Journal of
Saudi Chemical
Society, 20 (4)
(2016) 459.
[123]
Paulkumar, K. et
al., The
Scientific World
Journal, 1
(2014) 2014.
[124]
Medda, S. et
al., Applied
Nanoscience, 5
(7) (2015) 875.
[125]
Anandalakshmi,
K., Venugobal,
J. and Ramasamy,
V., Applied
Nanoscience, 6
(3) (2016) 399.
[126]
Raja, S., Ramesh,
V. and
Thivaharan, V.,
Arabian Journal
of Chemistry, 10
(2) (2017) 253.
[127]
Ali, K. et al.,
Plos One, 10 (7)
(2015) 0131178.
[128]
Jain, N. et al.,
Plos One, 10 (7)
(2015) 0134337.
[129]
Keskin, S. et
al. Journal of
Nano Research,
40 (2016) 120.
[130]
Allafchian, A.
et al., Journal
of Nanostructure
in Chemistry, 6
(2) (2016) 129.
[131]
de Aragao, A.P.
et al., Arabian
Journal of
Chemistry, 12
(8) (2019) 4182.
[132]
Sivagnanam, S.P.
et al., Green
Processing and
Synthesis, 6 (2)
(2017) 147.
[133]
Hamedi, S.,
Shojaosadati,
S.A. and
Mohammadi, A.,
Journal of
Photochemistry
and Photobiology
B: Biology, 167
(2017) 36.
[134]
Francis, S. et
al., Artificial
Cells,
Nanomedicine and
Biotechnology,
46 (4) (2018)
795.
[135]
Ramkumar, V.S.
et al.,
Biotechnology
Reports, 14
(2017) 1.
[136]
Mohanta, Y.K. et
al., Frontiers
in Molecular
Biosciences, 4
(2017) 14.
[137]
Gallucci, M.N.
et al.,
Materials
Letters, 197
(2017) 98.
[138]
Aboelfetoh, E.F.,
El-Shenody, R.A.
and Ghobara,
M.M.,
Environmental
Monitoring and
Assessment, 189
(7) (2017) 1.
[139]
Baghayeri, M. et
al., Applied
Organometallic
Chemistry, 32
(2) (2018) 4057.
[140]
Kathiraven, T.
et al., Applied
Nanoscience, 5
(4) (2015) 499.
[141]
He, Y. et al.,
RSC Advances, 7
(63) (2017)
39842.
[142]
Ajitha, B. et
al., Advanced
Powder
Technology, 29
(1) (2018) 86.
[143]
He, Y. et al.,
New Journal of
Chemistry, 42
(4) (2018)
28828.
|