Form Factor of
the Oriented
Pyramidal Ice
Crystals in the
Wentzel-Kramers-Brillouin
Approximation
El Mostafa Taria,
Abdelhadi
Bahaouia,
Redouane
Lamsoudia,
Mohammed Khouilidb
and
Mohamed
Ibnchaikha
a
Laboratory of
Theoretical
Physics,
Department of
Physics, Faculty
of Sciences,
Chouaib Doukkali
University, PO
Box 20, 24000 El
Jadida, Morocco.
b
Laboratory of
Measurement and
Control
Instrumentation,
Department of
Physics, Faculty
of Sciences,
Chouaib Doukkali
University, PO
Box 20, 24000 El
Jadida, Morocco.
Corresponding
Author:
El Mostafa Tari
Email:
tarielmostafa@gmail.com
Doi :
https://doi.org/10.47011/15.5.10
Cited by :
Jordan J. Phys.,
15 (5) (2022)
527-536
PDF
Received
on:
22/04/2021;
Accepted
on:
24/06/2021
Abstract:
In this
work,
the
Wentzel-Kramers-Brillouin
(WKB)
approximation
is
applied
to
determine
an
analytical
expression
of the
form
factor
of
oriented
pyramidal
ice
crystals.
This
study
will
focus on
two
special
cases of
the
normal
incident
of
light:
flat
incidence
and
edge-on
incidence.
This
form
factor
is
calculated
using an
adequate
decomposition
of the
pyramid.
Furthermore,
the
analytical
expression
of the
extinction
coefficient
is
derived
for
these
two
special
cases.
Finally,
some
numerical
examples
are
analyzed
to
illustrate
our
results.
Keywords:
Light
scattering,
Form
factor,
Wentzel-Kramers-Brillouin
approximation,
Pyramidal
ice
crystals,
Extinction
efficiency.
PACS:
41.20.-q;
41.85.-p.
References
[1] van de
Hulst, H.C.,
“Light
scattering by
small
particles”, (J.
Wiley & Sons,
New York, 1957).
[2] Mishchenko,
M.I. and Travis,
L.D., J. Quant.
Spectrosc.
Radiat. Transf.,
60 (1998) 309.
[3] Mazeron,
P. and Muller,
S., J. Quant.
Spectrosc.
Radiat. Transf.,
60 (1998) 391.
[4] Shapovalov,
K.A., European
Researcher, 49
(2013) 1291.
[5] Shapovalov,
K.A., Int. J.
Civ. Eng. Tech.,
9 (2018) 1664.
[6] Belafhal,
A., Ibnchaikh,
M. and Nassim,
K., J. Quant.
Spectrosc.
Radiat. Transf.,
72 (2002) 385.
[7] Pratesi,
F., Burresi, M.,
Riboli, F.,
Vynck, K. and
Wiersma, D.S.,
Opt. Express, 21
(2013) 460.
[8]
Leseur, O., Ph.D.
Thesis,
Université
Pierre et Marie
Curie (2016),
France.
[9] Lamsoudi,
R. and Ibnchaikh,
M., ARPN J. Eng.
Appl. Sci., 11
(2016) 13580.
[10] Ibn
Chaikh, M.,
Lamsoudi, R. and
Belafhal, A.,
Opt.
Quant.
Electron., 48
(2016) 466.
[11]
Hovenac, E. A.,
Appl. Opt., 30
(1991) 4739.
[12] Macke,
A., Appl. Opt.,
32 (1993) 2780.
[13] Krupp,
C., M.S. Thesis,
University of
Cologne (1991),
Germany.
[14] Magono,
C. and Lee, C.,
J. Fac. Sci.
Hokkaido Uni.
Ser., 7 (1966)
321.
[15] Barber,
P.W., Hill,
S.C., “Light
Scattering by
Particles:
Computational
Methods”, (World
Scientific,
Singapore,
1990).
[16]
Mishchenko, M.I.,
Travis, L.D. and
Mackowski, D.W.,
J. Quant.
Spectrosc.
Radiat. Transf.,
55 (1996) 535.
[17]
Mishchenko, M.I.,
Hovenier, J.W.
and Travis, L.D.,
“Light
Scattering by
Non-spherical
Particles:
Theory,
Measurements and
Applications”,
(Academic Press,
New York, 2000).
[18] Silvester,
P.P. and
Ferrari, R.L.,
“Finite Elements
for Electrical
Engineers”,
(Cambridge Univ.
Press, New York,
1996).
[19] Yang, P.
and Liou, K.N.,
J. Comput.
Phys., 140
(1998) 346.
[20] Klett,
J.D. and
Sutherland,
R.A., Appl.
Opt., 31 (1992)
373.
[21] Tari, E.M.,
Bahaoui, A.,
Lamsoudi R.,
Khouilid, M. and
Ibnchaikh, M.,
IOP SciNotes, 2
(2021) 015206.
[22]
Shepelevich, N.V.,
Prostakova, I.V.
and Lopatin, V.N.,
J. Quant.
Spectrosc.
Radiat. Transf.,
63 (1999) 353.
[23] Loik,
V.A.,
Konkolovich, A.V.
and Miskevich,
A.A., J. Opt.
Technol., 78
(2011) 455.
[24] Fan, X.,
Zheng, W. and
Singh, D.J.,
Light Sci.
Appl., 3 (2014)
179.
[25] Fast, F.G.,
Opt. Commun.,
313 (2014) 394.
[26] Ishimaru,
A., “Wave
Propagation and
Scattering in
Random Media,
Volume I: Single
Scattering and
Transport
Theory”,
(Academic Press,
New York, 1978).
[27] Berg, M.J.,
Sorensen, C.M.
and Chakrabarti,
A., J. Quant.
Spectrosc.
Radiat. Transf.,
112 (2011) 117.
|