JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Noise-dissipation Correlated Dynamics of a Double-well Bose-Einstein Condensate-reservoir System

Kalai K. Rajagopal,   Gafurjan Ibragimov,   Risman M. Hasim   and    

Idham A. Alias

 INSPEM & Department of Mathematics, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Corresponding Author:  Kalai Kumar Rajagopal                                 Email: kkrajagop@gmail.com

Doi : https://doi.org/10.47011/15.5.2

Cited by : Jordan J. Phys., 15 (5) (2022) 445-456

PDF

Received on: 31/12/2020;                                             Accepted on: 08/06/2021

Abstract: In this work, we study the dissipative dynamics of a double-well Bose-Einstein condensate (BEC) out-coupled to reservoir at each side of its trap. The sub-system comprises of a simple Bose-Hubbard model, where the interplay of atom-tunneling current and inter-particle interaction are the main quantum features. The contact with two separate heat baths causes dissipation and drives the system into a non-equilibrium state. The system is well described by the Generalized Quantum Heisenberg-Langevin equation. We considered two Markovian dissipative BEC systems based on (i) the mean-field model (MF), where the internal noise has been averaged out and (ii) the noise-correlated model (FDT). Physical quantities, such as population imbalance, coherence and entanglement of the system, are computed for the models. The two-mode BEC phases, such as the quantum tunneling state and the macroscopic quantum-trapping state, evolved into complicated dynamics by controlling the non-linear interaction and dissipation strengths. We found that many important quantum features produced by the noise-correlated FDT model are not captured by the mean-field model.

Keywords: Double-well BEC, Dissipation, Noise, Markovian, Non-Markovian, Fixed points.

PACS: 03.75 Lm, 03.65 Yz, 03.75 Gg, 05.

 

References

[1] Javanainen, J., Physical Review Letters, 57 (25) (1986) 3164.

[2] Milburn, G.J., Corney, J.F., Wright, E.M. and Walls, D.F., Physical Review A, 55 (6) (1997) 4318.

[3] Smerzi, A., Fantoni, S., Giovanazzi, S. and Shenoy, S.R., Physical Review Letters, 79 (25) (1997) 4950.

[4] Raghavan, S., Smerzi, A., Fantoni, S. and Shenoy, S.R., Physical Review A, 59 (1) (1999) 620.

[5] Albiez, M., Gati, R., Froelling, J., Hunsmann, S., Cristiani, M. and Oberthaler, M.K., Physical Review Letters, 95 (1) (2005) 010402.

[6] Gati, R., Hemmerling, B., Froelling, J., Albiez, M. and Oberthaler, M.K., Physical Review Letters, 96 (13) (2006) 130404.

[7] Zibold, T., Nicklas, E., Gross, C. and Oberthaler, M.K., Physical Review Letters, 105 (20) (2010) 204101.

[8] Levy, S., Lahoud, E., Shomroni, I. and Steinhauer, J., Nature, 449 (7162) (2007) 579.

[9] Hofferberth, S., Lesanovsky, I., Schumm, T., Imambekov, A., Gritsev, V., Demler, E. and Schmiedmayer, J., Nature-Physics, 4 (6) (2008) 489.

[10] Ruostekoski, J. and Walls, D.F., Physical Review A, 58 (1) (1998) R50.

[11] Khodorkovsky, Y., Kurizki, G. and Vardi, A., Physical Review Letters, 100 (22) (2008) 220403.

[12] Boukobza, E., Chuchem, M., Cohen, D. and Vardi, A., Physical Review Letters, 102 (18) (2009) 180403.

[13] Witthaut, D., Trimborn, F. and Wimberger, S., Physical Review Letters, 101 (20) (2008) 200402.

[14] Trimborn, F., Witthaut, D. and Wimberger, S., Journal of Physics B: Atomic, Molecular and Optical Physics, 41 (17) (2008) 171001.

[15] Witthaut, D., Trimborn, F., and Wimberger, S., Physical Review A, 79 (3) (2009) 033621.

[16] Wang, W., Fu, L.B. and Yi, X.X., Physical Review A, 75 (4) (2007) 045601.

[17] Huang, Y., Tan, Q.S., Fu, L.B. and Wang, X., Physical Review A, 88 (6) (2013) 063642.

[18] Ghasemian, E. and Tavassoly, M.K., Physics Letters A, 380 (40) (2016) 3262.

[19] Ghasemian, E. and Tavassoly, M.K., Laser Physics, 27 (9) (2017) 095202.

[20] Guarrera, V., Wuertz, P., Ewerbeck, A., Vogler, A., Barontini, G. and Ott, H., Physical Review Letters, 107 (16) (2011) 160403.

[21] Barontini, G., Labouvie, R., Stubenrauch, F., Vogler, A., Guarrera, V. and Ott, H., Physical Review Letters, 110 (3) (2013) 035302.

[22] Lindenberg, K. and West, B.J., “The Non-equilibrium Statistical Mechanics of Open and Closed Systems”, (VCH New York, 1990).

[23] Scully, M.O. and Zubairy, M.S., “Quantum Optics”, (Cambridge University Press, 1997).

[24] Lazarou, C., Nikolopoulos, G.M. and Lambropoulos, P., Journal of Physics B: Atomic, Molecular and Optical Physics, 40 (12) (2007) 2511.

[25] Nikolopoulos, G.M., Lazarou, C. and Lambropoulos, P., Journal of Physics B: Atomic, Molecular and Optical Physics, 41 (2) (2008) 025301.

[26] Rajagopal, K.K., Physica A: Statistical Mechanics and Its Applications, 429 (5) (2015) 231.

[27] Rajagopal, K.K. and Muniandy, S.V., Physica A: Statistical Mechanics and Its Applications, 434 (2015) 164.

[28] Yamamoto, Y. and Imamoglu, A., “Mesoscopic Quantum Optics”, (John Wiley & Sons, Inc., New York, 1999).

[29] Rajagopal, K.K. and Ibragimov, G., Brazilian Journal of Physics, 50 (2) (2020) 178.

[30] Weiss, U., “Quantum Dissipative Systems”, 3rd Edition, (World Scientific, Singapore, 2008).

[31] Uhlenbeck, G.E. and Ornstein, L.S., Physical Review, 36 (1930) 823.

[32] Sargsyan, V.V., Adamian, G.G., Antonenko, N.V. and Lacroix, D., Physical Review A, 90 (2) (2014) 022123.

[33] Rajagopal, K.K. and Ibragimov, G., Brazilian Journal of Physics, 51 (2021) 944.

[34] Pethick, C.J. and Smith, H., “Bose-Einstein Condensation in Dilute Gases”, (Cambridge University Press, 2008).

[35] Trimborn, F., Witthaut, D. and Korsch, H.J., Physical Review A, 79 (1) (2009) 013608.

[36] Anglin, J.R. and Vardi, A., Physical Review A, 64 (1) (2001) 013605.

 [37] Vardi, A, Yurovsky, V.A. and Anglin, J.R., Physical Review A, 64 (6) (2001) 063611.

 [38] Tikhonenkov, I., Anglin, J.R. and Vardi, A., Physical Review A, 75 (1) (2007) 013613.

[39] Constantinides, A. and Mostoufi, N., “Numerical Methods for Chemical Engineers with Matlab Applications with Cdrom”, (Prentice Hall PTR, 1999).

[40] Shampine, L.F., Gladwell, I., Shampine, L. and Thompson, S., “Solving ODEs with Matlab”, (Cambridge University Press, 2003).

[41] Perko, L., “Differential Equations and Dynamical Systems”, Volume 7, (Springer Science & Business Media, 2013).

[42] Barreira, L. and Valls, C., “Dynamical Systems: An Introduction”, (Springer Science & Business Media, 2012).

[43] Bo, C., Lin, W.S. and Xi, Y.X., Chinese Physics Letters, 27 (7) (2010) 070303.

[44] Kordas, G., Wimberger, S. and Witthaut, D., Physical Review A, 87 (4) (2013) 043618.

[45] Hillery, M. and Zubairy, M.S., Physical Review Letters, 96 (5) (2006) 050503.

[46] Hillery, M. and Zubairy, M.S., Physical Review A, 74 (3) (2006) 032333.

[47] Labouvie, R., Santra, B., Heun, S., Wimberger, S. and Ott, H., Physical Review Letters, 115 (2015) 050601.

[48] Labouvie, R., Santra, B., Heun, S., Wimberger, S. and Ott, H., Physical Review Letters, 116 (2016) 235302.

[49] Kosloff, R., Quantum Thermodynamics: Entropy, 15 (2013) 2100.

[50] Hofer, P.P., Perarnau-Llobet, M., Miranda, L.D.M., Haack, G., Silva, R., Brask, J.B. and Brunner, N., New Journal of Physics, 19 (12) (2017) 123037.