JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Numerical Calculations of Energies for an Infinite Potential Well with Sinusoidal Bottom

Nancy O. Olumese  and Olutayo W. Abodunrin

Ahmad Jaber, Ayham Shaer, Sami Mukhiemer and Sami Al-Jaber

Physics Department, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine.

 

Corresponding Author:  Ayham Shaer                        Email: ayham.shaer@najah.edu

Doi: https://doi.org/10.47011/15.5.4

Cited by : Jordan J. Phys., 15 (5) (2022) 469-476

PDF

Received on: 26/02/2021;                                                   Accepted on: 30/06/2021

Abstract: We present an investigation for a particle confined in an infinite well with sinusoidal bottom, using the perturbation theory and numerical solution for the Schrödinger equation to obtain the eigen energies and wavefunctions. Potential strength and potential oscillation dependence of the state are examined and analyzed. It is shown that the particle in a box with sinusoidal bottom does not show up the Klauder phenomenon when the perturbations are gradually reduced to zero. The research results show that the potential oscillation significantly affects certain quantum states and, therefore, the ability to manipulate the energy difference between the states. In addition, our results for the present system converge to their corresponding values for the unperturbed one in the high-potential oscillation limit.

Keywords: Infinite well, Perturbation theory, Sinusoidal potential, Numerical calculations, Klauder phenomenon.

 

References

[1] Hu, B., Li, B., Liu, J. and Gu, Y., Physical Review Letters, 82 (21) (1999) 4224.

[2] Mustafa, O. and Mazharimousavi, S.H., Physics Letters A, 373 (3) (2009) 325.

[3] Marin, J.L. and Cruz, S.A., American Journal of Physics, 56 (12) (1988) 1134.

[4] Heimgartner, B., Leuenberger, P., Wiedmer, H.U., Zweiacker, M. and Kneubühl, F.K., Infrared Physics, 30 (4) (1990) 363.

[5] Glasser, M.L., Mateo, J., Negro, J. and Nieto, L.M., Chaos, Solitons & Fractals, 41 (4) (2009) 2067.

[6] Tang, L.M., Wang, L.L., Chen, K.Q., Huang, W.Q. and Zou, B.S., Applied Physics Letters, 88 (16) (2006) 163505.

[7] Dmytruk, O., Chevallier, D., Loss, D. and Klinovaja, J., Physical Review B, 98 (16) (2018) 165403.

[8] Kasapoglu, E.S.İ.N., Ungan, F.A.T.İ.H., Sari, H.Ü.S.E.Y.İ.N., Sökmen, I., Mora-Ramos, M.E. and Duque, C.A., Superlattices and Microstructures, 73 (2014) 171.

[9] Khordad, R., Tafaroji, S., Katebi, R. and Ghanbari, A., Communications in Theoretical Physics, 57 (6) (2012) 1076.

[10] Johnston, D.C., American Journal of Physics, 88 (12) (2020) 1109.

[11] Sakly, A., Safta, N., Mejri, H. and Lamine, A.B., Journal of Alloys and Compounds, 509 (5) (2011) 2493.

[12] Alhaidari, A.D. and Bahlouli, H., Journal of Mathematical Physics, 49 (8) (2008) 082102.

[13] Dhatt, S. and Bhattacharyya, K., Journal of Mathematical Chemistry, 50 (1) (2012) 9.

[14] Pillai, M., Goglio, J. and Walker, T.G., American Journal of Physics, 80 (11) (2012) 1017.

[15] Marsiglio, F., American Journal of Physics, 77 (3) (2009) 253.