Numerical
Calculations of
Energies for an
Infinite
Potential Well
with Sinusoidal
Bottom
Nancy O. Olumese and Olutayo W. Abodunrin
Ahmad Jaber, Ayham Shaer, Sami
Mukhiemer
and Sami
Al-Jaber
Physics
Department,
Faculty of
Science, An-Najah
National
University,
Nablus, West
Bank, Palestine.
Corresponding
Author: Ayham
Shaer
Email:
ayham.shaer@najah.edu
Doi: https://doi.org/10.47011/15.5.4
Cited by :
Jordan J. Phys.,
15 (5) (2022)
469-476
PDF
Received
on:
26/02/2021;
Accepted
on:
30/06/2021
Abstract:
We
present
an
investigation
for a
particle
confined
in an
infinite
well
with
sinusoidal
bottom,
using
the
perturbation
theory
and
numerical
solution
for the
Schrödinger
equation
to
obtain
the
eigen
energies
and
wavefunctions.
Potential
strength
and
potential
oscillation
dependence
of the
state
are
examined
and
analyzed.
It is
shown
that the
particle
in a box
with
sinusoidal
bottom
does not
show up
the
Klauder
phenomenon
when the
perturbations
are
gradually
reduced
to zero.
The
research
results
show
that the
potential
oscillation
significantly
affects
certain
quantum
states
and,
therefore,
the
ability
to
manipulate
the
energy
difference
between
the
states.
In
addition,
our
results
for the
present
system
converge
to their
corresponding
values
for the
unperturbed
one in
the
high-potential
oscillation
limit.
Keywords:
Infinite
well,
Perturbation
theory,
Sinusoidal
potential,
Numerical
calculations,
Klauder
phenomenon.
References
[1] Hu, B., Li,
B., Liu, J. and
Gu, Y., Physical
Review Letters, 82
(21) (1999)
4224.
[2] Mustafa, O.
and
Mazharimousavi,
S.H., Physics
Letters A, 373
(3) (2009) 325.
[3] Marin, J.L.
and Cruz, S.A.,
American Journal
of Physics, 56
(12) (1988)
1134.
[4] Heimgartner,
B., Leuenberger,
P., Wiedmer, H.U.,
Zweiacker, M.
and Kneubühl,
F.K., Infrared
Physics, 30 (4)
(1990) 363.
[5] Glasser, M.L.,
Mateo, J.,
Negro, J. and
Nieto, L.M.,
Chaos, Solitons
& Fractals, 41
(4) (2009) 2067.
[6] Tang, L.M.,
Wang, L.L.,
Chen, K.Q.,
Huang, W.Q. and
Zou, B.S.,
Applied Physics
Letters, 88 (16)
(2006) 163505.
[7] Dmytruk, O.,
Chevallier, D.,
Loss, D. and
Klinovaja, J.,
Physical Review
B, 98 (16)
(2018) 165403.
[8] Kasapoglu,
E.S.İ.N., Ungan,
F.A.T.İ.H.,
Sari,
H.Ü.S.E.Y.İ.N.,
Sökmen, I.,
Mora-Ramos, M.E.
and Duque, C.A.,
Superlattices
and
Microstructures, 73
(2014) 171.
[9] Khordad, R.,
Tafaroji, S.,
Katebi, R. and
Ghanbari, A.,
Communications
in Theoretical
Physics, 57 (6)
(2012) 1076.
[10] Johnston,
D.C., American
Journal of
Physics, 88 (12)
(2020) 1109.
[11] Sakly, A.,
Safta, N.,
Mejri, H. and
Lamine, A.B.,
Journal of
Alloys and
Compounds, 509
(5) (2011) 2493.
[12] Alhaidari,
A.D. and
Bahlouli, H.,
Journal of
Mathematical
Physics, 49 (8)
(2008) 082102.
[13] Dhatt, S.
and
Bhattacharyya,
K., Journal of
Mathematical
Chemistry, 50
(1) (2012) 9.
[14] Pillai, M.,
Goglio, J. and
Walker, T.G.,
American Journal
of Physics, 80
(11) (2012)
1017.
[15] Marsiglio,
F., American
Journal of
Physics, 77 (3)
(2009) 253.
|