JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Approximate Energy Spectra of the Quantum Gaussian Well: A Four-parameter Potential Fitting

Mahmoud Farouta,  Ayham Shaera  and  Sameer M. Ikhdaira,b

 a Physics Department, Faculty of Science, An- Najah National University, Nablus, West Bank, Palestine.

b Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey.

Corresponding Author:  Mahmoud Farout                                         Email: m.qaroot@najah.edu

Doi: https://doi.org/10.47011/15.5.6

Cited by : Jordan J. Phys., 15 (5) (2022) 487-494

PDF

Received on: 11/03/2021;                                                Accepted on: 13/06/2021

Abstract: In this work, we present a detailed study of a one-dimensional Schrödinger equation in the presence of quantum Gaussian well interaction. Further, we investigate the approximate solutions by using the harmonic oscillator approximation, variational principle, four-parameter potential fitting and numerical solution using the finite-difference method. The parabolic approximation yields an excellent energy value compared with the numerical solution of the Gaussian system only for the ground state, while for the excited states, it provides a higher approximation. Also, the analytical bound-state energies of the four-parameter potential under the framework of the Nikiforov-Uvarov (NU) method have been used after getting the suitable values of the potential parameters using numerical fitting. The present results of the system states are found to be in high agreement with the well-known numerical results of the Gaussian potential.

Keywords: Gaussian potential, One-dimensional Schrödinger equation, Nikiforov- Uvarov (NU) method, Four-parameter potential.

PACS: 03.65.−w; 02.90.+p; 12.39.Pn.

 

References

[1] Choi, H., Kim, M., Moon, J.-Y., Lee, J.-H. and Son, S.-K., Journal of Nanoscience and Nanotechnology, 20 (7) (2020) 4428.

[2] Muchatibaya, G., Fassari, S., Rinaldi, F. and Mushanyu, J., Advances in Mathematical Physics, 2016 (2016) 2125769.

[3] Boyacioglu, B. and Chatterjee, A., Journal of Applied Physics, 112 (8) (2012) 083514. 54.

[4] Elsaid, M., Ali, M. and Shaer, A., Modern Physics Letters B, 33 (34) (2019) 1950422.

[5] Gharaati, A. and Khordad, R., Superlattices and Microstructures, 48 (3) (2010) 276.

[6] Nandi, S., American Journal of Physics, 78 (12) (2010) 1341.

[7] Fernández, F.M., American Journal of Physics, 79 (7) (2011) 752.

[8] Ikhdair, S. and Sever, R., Journal of Molecular Structure: THEOCHEM, 806 (1-3) (2007) 155.

[9] Ikhdair, S.M. and Sever, R., Journal of Molecular Structure: THEOCHEM, 855 (1-3) (2008) 13.

[10] Ikhdair, S.M. and Abu-Hasna, J., Physica Scripta, 83 (2) (2011) 025002.

[11] Behera, A.K., Bhoi, J., Laha, U. and Khirali, B., Communications in Theoretical Physics, 72 (7) (2020) 075301.

[12] Farout, M., Sever, R. and Ikhdair, S.M., Chinese Physics B, 29 (6) (2020) 060303.

[13] Fu, K.-X., Wang, M. and Jia, C.-S., Communications in Theoretical Physics, 71 (1) (2019) 103.

[14] Şimşek, M. and Özçelik, S., Physics Letters A, 186 (1-2) (1994) 35.

[15] Rosen, N. and Morse, P.M., Physical Review, 42 (2) (1932) 210.

[16] Greene, R.L. and Aldrich, C., Physical Review A, 14 (6) (1976) 2363.56.

[17] Eckart, C., Physical Review, 35 (11) (1930) 1303.

[18] Codriansky, S., Cordero, P. and Salamó, S., Journal of Physics A: Mathematical and General, 32 (35) (1999) 6287.

[19] Nikiforov, A.F. and Uvarov, V.B., "Special Functions of Mathematical Physics", Vol. 205, (Basel: Birkhäuser, 1988).

[20] Eğrifes, H., Demirhan, D. and Büyükkılıç, F., Physics Letters A, 275 (4) (2000) 229.