JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Vacuum and Solvent Dynamics of a Cyanobiphenyl Molecule: Mesophase Estimation from Thermodynamic View

P. Lakshmi Praveen

 Department of Physics, Veer Surendra Sai University of Technology, Burla-768018, Sambalpur, Odisha, India.

Corresponding Author:  P. Lakshmi Praveen                                 Email: plpraveen_phy@vssut.ac.in

Doi: https://doi.org/10.47011/15.5.8

Cited by : Jordan J. Phys., 15 (5) (2022) 511-517

PDF

Received on: 17/03/2021;                                                             Accepted on: 20/05/2021

Abstract: Thermodynamic view has been presented to analyze the vacuum, solvent dynamics and mesophase behaviour of a cyanobiphenyl compound named p-n-butyl cyanobiphenyl (4CB). The different modes of interaction energy values under vacuum in a dielectric medium (benzene) during translation and rotation have been calculated. The corresponding Helmholtz free energy and entropy have been analyzed at room temperature (300K) and transition temperature (389.5K) and the stability of the molecule at definite translation, rotation and temperature has been concluded. The change of thermodynamic characteristics and compound stability at nematic-isotropic temperature has been observed. The observed results have been analyzed to obtain an insight into the process of mesophase formation. This study may guide in establishing the other molecular models with transition temperature nearer to room temperature.

Keywords: Liquid crystal, 4CB, Mesophase, Free energy, Entropy.

 

References

[1] Blinov, L.M. “Structure and Properties of Liquid Crystals”, (Springer, New York, 2011).

[2] Kundu, P., Mishra, P., Jaiswal, A. and Ram, J., J. Mol. Liq., 296 (2019) 111769.

[3] Praveen, P.L. and Ojha, D.P., J. Mol. Liq., 197 (2014) 106.

[4] Praveen, P.L. and Ojha, D.P., J. Mol. Liq., 161 (2011) 44.

[5] Goswami, D., Mandal, P.K., Gutowski, O. and Sarma, A., Liq. Cryst., 46 (2019) 2115.

[6] Patari, S., Chakraborty, S. and Nath, A., Liq. Cryst., 43 (2016) 1017.

[7] Singh, U.B., Pandey, M.B., Dhar, R., Verma, R. and Kumar, S., Liq. Cryst., 43 (2016) 1075.

[8] Nayak, S.K. and Praveen, P.L., J. Phys. Sci., 31 (2020) 33.

[9] Adams, W.H., Int. J. Quant. Chem., 25 (1991) 165.

[10] Shavitt, I., Int. J. Mol. Sci., 3 (2002) 639.

[11] Aneela, R., Praveen, P.L. and Ojha, D.P., J. Mol. Liq., 166 (2012) 70.

[12] Jose, T.J. et al., Arabaian J. Sci. Engg., 44 (2019) 6601.

[13] Praveen, P.L. and Ojha, D.P., Z. Naturforsch., 65a (2010) 555.

[14] Jose, T.J., Simi, A., Raju, M.D. and Praveen, P.L., Acta Physica Polonica A, 134 (2018) 512.

[15] Praveen, P.L., Ajeetha, N. and Ojha, D.P., Russ. J. Phys. Chem., 84 (2010) 229.

[16] Vani, G.V., Mol. Cryst. Liq. Cryst., 99 (1983) 21.

[17] Pople, J.A. and Beveridge, D.L., "Approximate Molecular Orbital Theory", (Mc-Graw Hill: New York, 1970).

[18] Claverie, P., In: Pullmann, B. (ed.) "Intermolecular Interactions: From Diatomic to Biopolymers", (John Wiley: New York, 1978), p. 69.

[19] Praveen, P.L., Mol. Cryst. Liq. Cryst., 667 (2018) 44.

[20] Das, P. and Praveen, P.L., Mol. Cryst. Liq. Cryst., 652 (2017) 185.

[21] Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., "Molecular Theory of Gases and Liquids", (John Wiley & Sons, USA, 1967).

[22] Praveen, P.L. and Ojha, D.P., Phase Trans., 86 (2013) 433.

[23] Das, P. and Praveen, P.L., J. Mol. Struct., 1233 (2021) 130137.

[24] Ramakrishna, D.S. et al., J. Mol. Struct., 1236 (2021) 130336.

[25] Sahoo, R.R. et al., J. Physical Sci., 32 (2021) 27.

[26] Praveen, P.L. et al., Mol. Cryst. Liq. Cryst., 548 (2011) 61.

[27] Aneela, R. et al., Mol. Cryst. Liq. Cryst., 557 (2012) 90.

[28] Das, P. et al., J. Mol. Liq., 288 (2019) 111029.

[29] Praveen, P.L. et al., Mat. Chem. Phys., 126 (2011) 248.

[30] Praveen, P.L. and Ojha, D.P., Z. Naturforsch., 67a (2012) 210.

[31] Ramakrishna, D.S. et al., Mol. Cryst. Liq. Cryst., 643 (2017) 76.