Vacuum and
Solvent Dynamics
of a
Cyanobiphenyl
Molecule:
Mesophase
Estimation from
Thermodynamic
View
P. Lakshmi Praveen
Department
of Physics, Veer
Surendra Sai
University of
Technology,
Burla-768018,
Sambalpur,
Odisha, India.
Corresponding
Author:
P. Lakshmi
Praveen
Email:
plpraveen_phy@vssut.ac.in
Doi: https://doi.org/10.47011/15.5.8
Cited by :
Jordan J. Phys.,
15 (5) (2022)
511-517
PDF
Received
on:
17/03/2021;
Accepted
on:
20/05/2021
Abstract:
Thermodynamic
view has
been
presented
to
analyze
the
vacuum,
solvent
dynamics
and
mesophase
behaviour
of a
cyanobiphenyl
compound
named
p-n-butyl
cyanobiphenyl
(4CB).
The
different
modes of
interaction
energy
values
under
vacuum
in a
dielectric
medium
(benzene)
during
translation
and
rotation
have
been
calculated.
The
corresponding
Helmholtz
free
energy
and
entropy
have
been
analyzed
at room
temperature
(300K)
and
transition
temperature
(389.5K)
and the
stability
of the
molecule
at
definite
translation,
rotation
and
temperature
has been
concluded.
The
change
of
thermodynamic
characteristics
and
compound
stability
at
nematic-isotropic
temperature
has been
observed.
The
observed
results
have
been
analyzed
to
obtain
an
insight
into the
process
of
mesophase
formation.
This
study
may
guide in
establishing
the
other
molecular
models
with
transition
temperature
nearer
to room
temperature.
Keywords:
Liquid
crystal,
4CB,
Mesophase,
Free
energy,
Entropy.
References
[1] Blinov, L.M.
“Structure and
Properties of
Liquid
Crystals”,
(Springer, New
York, 2011).
[2] Kundu, P.,
Mishra, P.,
Jaiswal, A. and
Ram, J., J. Mol.
Liq., 296 (2019)
111769.
[3]
Praveen, P.L.
and Ojha, D.P.,
J. Mol. Liq.,
197 (2014)
106.
[4]
Praveen, P.L.
and Ojha, D.P.,
J. Mol. Liq.,
161 (2011)
44.
[5] Goswami, D.,
Mandal, P.K.,
Gutowski, O. and
Sarma, A., Liq.
Cryst., 46
(2019) 2115.
[6] Patari, S.,
Chakraborty, S.
and Nath, A.,
Liq. Cryst., 43
(2016) 1017.
[7] Singh, U.B.,
Pandey, M.B.,
Dhar, R., Verma,
R. and Kumar,
S., Liq. Cryst.,
43 (2016) 1075.
[8] Nayak, S.K.
and Praveen, P.L.,
J. Phys. Sci.,
31 (2020) 33.
[9] Adams, W.H.,
Int. J. Quant.
Chem., 25 (1991)
165.
[10] Shavitt,
I., Int. J. Mol.
Sci., 3 (2002)
639.
[11] Aneela, R.,
Praveen, P.L.
and Ojha, D.P.,
J. Mol. Liq.,
166 (2012) 70.
[12] Jose, T.J.
et al., Arabaian
J. Sci. Engg.,
44 (2019) 6601.
[13] Praveen,
P.L. and Ojha,
D.P., Z.
Naturforsch.,
65a (2010) 555.
[14] Jose, T.J.,
Simi, A., Raju,
M.D. and Praveen,
P.L., Acta
Physica Polonica
A, 134 (2018)
512.
[15] Praveen,
P.L., Ajeetha,
N. and Ojha, D.P.,
Russ. J. Phys.
Chem., 84 (2010)
229.
[16] Vani, G.V.,
Mol. Cryst. Liq.
Cryst., 99
(1983) 21.
[17] Pople, J.A.
and Beveridge,
D.L., "Approximate
Molecular
Orbital Theory",
(Mc-Graw Hill:
New York, 1970).
[18] Claverie,
P., In: Pullmann,
B. (ed.) "Intermolecular
Interactions:
From Diatomic to
Biopolymers",
(John Wiley: New
York, 1978), p.
69.
[19] Praveen,
P.L., Mol. Cryst.
Liq. Cryst., 667
(2018) 44.
[20] Das, P. and
Praveen, P.L.,
Mol. Cryst. Liq.
Cryst., 652
(2017) 185.
[21]
Hirschfelder,
J.O., Curtiss,
C.F. and Bird,
R.B., "Molecular
Theory of Gases
and Liquids",
(John Wiley &
Sons, USA,
1967).
[22] Praveen,
P.L. and Ojha,
D.P., Phase
Trans., 86
(2013) 433.
[23] Das, P. and
Praveen, P.L.,
J. Mol. Struct.,
1233 (2021)
130137.
[24]
Ramakrishna, D.S.
et al., J. Mol.
Struct., 1236
(2021) 130336.
[25] Sahoo, R.R.
et al., J.
Physical Sci.,
32 (2021) 27.
[26] Praveen,
P.L. et al.,
Mol. Cryst. Liq.
Cryst., 548
(2011) 61.
[27] Aneela, R.
et al., Mol.
Cryst. Liq.
Cryst., 557
(2012) 90.
[28] Das, P. et
al., J. Mol. Liq.,
288 (2019)
111029.
[29] Praveen,
P.L. et al.,
Mat. Chem.
Phys., 126
(2011) 248.
[30] Praveen,
P.L. and Ojha,
D.P., Z.
Naturforsch.,
67a (2012) 210.
[31]
Ramakrishna, D.S.
et al., Mol.
Cryst. Liq.
Cryst., 643
(2017) 76.
|