Monte Carlo
Simulation of
Free-standing
Thin Films under
Low Energy
Electron
Bombardment:
Electron
Inelastic Mean
Free Path (IMFP)
Determination
Using Elastic
Peak of the
Transmitted
Electrons
Ahmad M.D. (Assa'd) Jabera,
H. H. Kawariqb,
C. G. H. Walkerc,d
and Marwan S.
Mousae
a
Department of
Basic Medical
Sciences,
Faculty
of Medicine,
Aqaba Medical
Sciences
University,
Aqaba,
77110, Jordan.
b
Department of
Mathematics,
Faculty of
Science,
Philadelphia
University,
Jerash, Jordan.
c
Laboratorium für
Festkörperphysik,
Auguste-Piccard-Hof
1, 8093 Zürich,
Switzerland.
d
Department of
Physics,
University of
York, Heslington,
York, YO10 5DD,
UK.
e
Department of
Physics, Mu'tah
University,
P.O.Box (7), Al-Karak,
Jordan.
Corresponding
Author:
Ahmad M.D. (Assa'd)
Jaber
Email:
ahmad.jabr@amsu.edu.jo
Doi: https://doi.org/10.47011/16.4.1
Cited by :
Jordan J. Phys.,
16 (4) (2023)
381-393
PDF
Received on:
23/08/2022;
Accepted
on:
25/10/2022
Abstract:
The
electron
energy
spectra
of
transmitted
scattered
electrons
from
free-standing
films
are
simulated
using a
Monte
Carlo
computational
approach.
Elastic
scattering
is
simulated
using
Mott
cross-sections
and
inelastic
scattering
via
discrete
processes
determined
from
dielectric
function
data.
This
allows
one to
simulate
the
secondary
electrons
as well
as the
loss
peaks
near the
elastic
(zero-loss)
peak.
The
current
study
suggested
a
directed
approach
for
determining
the
electron
inelastic
mean
free
path (IMFP)
of
materials
at low
primary
electron
energies.
The IMFP
of the
reference
material
is not
necessary
for the
suggested
technique.
The
suggested
technique
uses the
ratio
between
the
transmitted
elastic
peak
intensity
and the
background
intensity
of
backscattered
electrons.
Free-standing
films of
Si, Cu,
and Au
were
studied
with
thicknesses
varying
from 2
to 12
nm.
Primary
electron
energies
of 1, 3,
and 5
keV were
applied.
The
results
appeared
very
good,
with the
percentage
error
range
being
between
5% and
25%. We
also
investigated
the
proportion
of the
first
and
second
plasmon
peak
intensities
to the
elastic
peak
intensity.
We
believe
that the
latter
could
provide
a
directed
method
of
measuring
the IMFP
of
materials.
Keywords:
Inelastic
mean
free
path,
Monte
Carlo
simulation,
Geant4,
Free-standing
film,
Zero-loss
peak.
References
[1] Boyes, E.D.,
Microsc.
Microanal.
5 (1999) 674.
[2] Assa’d,
A.M.D.,
Jordan J. Phys.,
12 (1) (2019)
37.
[3] El Gomati,
M.M. and El
Bakush, T.A.,
Surf. Interface
Anal., 24 (1996)
152.
[4] Assa’d,
A.M.D. and
Kawariq, H.,
Jordan J. Phys.,
13 (2) (2020)
137.
[5]
Geim, K. and
Novoselov, K.S.,
Nat. Mater., 6
(2007) 183.
[6] Das, S.,
Robinson, J.A.,
Dubey, M.,
Terrones, H. and
Terrones, M.,
Ann. Rev. Mater.
Res., 45 (2015)
1.
[7] 2D
Materials:
Preparation,
Characterization
and
Applications,
Ed. I-Wen Peter
Chen, Scientific
Reports. (2019).
[8] Konvalina,
I., Daniel, B.,
Zouhar, M.,
Paták, A.,
Piňos, J.,
Radlička, T.,
Frank, L.,
Müllerová, I.
and
Materna-Mikmeková,
E., Microsc.
Microanal., 26
(2020) 2636.
[9]
Müllerová, I.,
Hovorka, M.,
Hanzlíková, R.
and Frank, L.,
Mater. Trans.,
51 (2010) 265.
[10]
Kuhlman, W.,
Libera, M. and
Gauthier, M.,
Microsc.
Microanal., 6
(2000) 222.
[11] Sanche, L.,
J. Chem. Phys.,
71 (1979) 4860.
[12] Naaman, R.
and Sanche, L.,
Chem. Rev., 107
(2007) 1553.
[13] Walker,
C.G.H.,
Konvalina, I.,
Mika, F., Frank,
L. and
Müllerová, I.,
Nucl. Instrum.
Meth. B, 415
(2018) 17.
[14] Werner,
W.S.M., Surf.
Interface Anal.,
35 (2003) 347.
[15] Cazaux, J.,
J. Appl. Phys.,
111 (2012)
06490.
[16] Feenstra,
R.M.,
Srivastava, N.,
Gao, Q., Widom,
M., Diaconescu,
B., Ohta, T.,
Kellogg, G.L.,
Robinson, J.T.
and Vlassiouk,
I.V., Phys. Rev.
B, 87 (2013)
041406.
[17] Egerton,
R.F., "EELS in
the Electron
Microscope".
(Plenum Press,
1986).
[18] Botton, G.A.,
L'Esperance, G.,
Gallerneault,
C.E. and Ball,
M.D., J. Microsc.,
180 (1995) 217.
[19] Egerton,
R.F. and Malac,
M., J. Electron
Spectrosc., 143
(2005) 43.
[20] Tanuma, S.,
"Surface
Analysis by
Auger and X-ray
Photoelectron
Spectroscopy"
Eds. D. Briggs
and J. T. Grant
(IM Publications
and Surface
Spectra Ltd;
Chichester and
Manchester,
2003), p. 259.
[21] Jablonski,
A. and Powell,
C.J., J.
Electron
Spectrosc., 281
(2017) 1.
[22] Tanuma, S.,
Shiratori, T.,
Kimura, T., Goto,
K., Ichimura, S.
and Powell, C.J.,
Surf. Interface
Anal., 37 (11)
(2005) 833–45.
[23] Tanuma, S.,
Yoshikawa, H.,
Okamoto, N. and
Goto, K., J.
Surf. Anal., 15
(2) (2008)
195–99.
[24] Shinotsuka,
H., Tanuma, S.,
Powell, C.J. and
Penn, D.R.,
Surf. Interface
Anal., 47 (9)
(2015) 871–88.
[25]
https://delongamerica.com/.
[26]
Kolosov, V.Y.,
Yushkova, A.A.
and Bokuniaeva,
A.O., AIP Conf.
Proc.,
2015, (2018)
020042.
[27] Kieft, E.
and Bosch, E.,
J. Phys. D, 41
(2008) 215310.
[28] Agostinelli,
S.,
Allison,
J.
, Amakoe,
K.
, Apostolakis,
J.
, Araujo, H.,
Arce,
P.,
Asai,
M.,
Axen,
D.,
Banerjee,
S.,
Barrand, G.,
Behner,
F.,
Bellagamba,
L.,
Boudreau,
J.,
Broglia,
L.,
Brunengo,
A.,
Burkhardt,
H.,
Chauvie,
S.,
Chuma,
J.,
Chytracek, R.
and Cooperman,
G., Nucl.
Instrum. Meth.
A, 506 (2003)
250.
[29] Mott, N.F.
and Massey,
H.S.W. “Theory
of Atomic
Collisions”.
(Oxford
University Press,
London, 1965).
[30] Werner, W.,
Surf. Interface
Anal., 31 (2001)
141.
[31]
Palik, E.D.,
"Handbook
of Optical
Constants of
Solids"
(Academic,
1985).
[32]
Walker, C.G.H.,
J. Matthew A.D.
and El‐Gomati,
M.M., Scanning,
36 (2014) 241.
|