JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Monte Carlo Simulation of Free-standing Thin Films under Low Energy Electron Bombardment: Electron Inelastic Mean Free Path (IMFP) Determination Using Elastic Peak of the Transmitted Electrons
 

Ahmad M.D. (Assa'd) Jabera, H. H. Kawariqb, C. G. H. Walkerc,d and Marwan S. Mousae

 a Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan.

b Department of Mathematics, Faculty of Science, Philadelphia University, Jerash, Jordan.

c Laboratorium für Festkörperphysik, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.

d Department of Physics, University of York, Heslington, York, YO10 5DD, UK.

e Department of Physics, Mu'tah University, P.O.Box (7), Al-Karak, Jordan.

Corresponding Author:  Ahmad M.D. (Assa'd) Jaber                             Email: ahmad.jabr@amsu.edu.jo

Doi: https://doi.org/10.47011/16.4.1
 

Cited by : Jordan J. Phys., 16 (4) (2023) 381-393

PDF

Received on: 23/08/2022;                                                          Accepted on: 25/10/2022

Abstract: The electron energy spectra of transmitted scattered electrons from free-standing films are simulated using a Monte Carlo computational approach. Elastic scattering is simulated using Mott cross-sections and inelastic scattering via discrete processes determined from dielectric function data. This allows one to simulate the secondary electrons as well as the loss peaks near the elastic (zero-loss) peak. The current study suggested a directed approach for determining the electron inelastic mean free path (IMFP) of materials at low primary electron energies. The IMFP of the reference material is not necessary for the suggested technique. The suggested technique uses the ratio between the transmitted elastic peak intensity and the background intensity of backscattered electrons. Free-standing films of Si, Cu, and Au were studied with thicknesses varying from 2 to 12 nm. Primary electron energies of 1, 3, and 5 keV were applied. The results appeared very good, with the percentage error range being between 5% and 25%. We also investigated the proportion of the first and second plasmon peak intensities to the elastic peak intensity. We believe that the latter could provide a directed method of measuring the IMFP of materials.

Keywords: Inelastic mean free path, Monte Carlo simulation, Geant4, Free-standing film, Zero-loss peak.

 

References

[1] Boyes, E.D., Microsc. Microanal. 5 (1999) 674.

[2] Assa’d, A.M.D., Jordan J. Phys., 12 (1) (2019) 37.

[3] El Gomati, M.M. and El Bakush, T.A., Surf. Interface Anal., 24 (1996) 152.

[4] Assa’d, A.M.D. and Kawariq, H., Jordan J. Phys., 13 (2) (2020) 137.

[5] Geim, K. and Novoselov, K.S., Nat. Mater., 6 (2007) 183.

[6] Das, S., Robinson, J.A., Dubey, M., Terrones, H. and Terrones, M., Ann. Rev. Mater. Res., 45 (2015) 1.

[7] 2D Materials: Preparation, Characterization and Applications, Ed. I-Wen Peter Chen, Scientific Reports. (2019).

[8] Konvalina, I., Daniel, B., Zouhar, M., Paták, A., Piňos, J., Radlička, T., Frank, L., Müllerová, I. and Materna-Mikmeková, E., Microsc. Microanal., 26 (2020) 2636.

[9] Müllerová, I., Hovorka, M., Hanzlíková, R. and Frank, L., Mater. Trans., 51 (2010) 265.

[10] Kuhlman, W., Libera, M. and Gauthier, M., Microsc. Microanal., 6 (2000) 222.

[11] Sanche, L., J. Chem. Phys., 71 (1979) 4860.

[12] Naaman, R. and Sanche, L., Chem. Rev., 107 (2007) 1553.

[13] Walker, C.G.H., Konvalina, I., Mika, F., Frank, L. and Müllerová, I., Nucl. Instrum. Meth. B, 415 (2018) 17.

[14] Werner, W.S.M., Surf. Interface Anal., 35 (2003) 347.

[15] Cazaux, J., J. Appl. Phys., 111 (2012) 06490.

[16] Feenstra, R.M., Srivastava, N., Gao, Q., Widom, M., Diaconescu, B., Ohta, T., Kellogg, G.L., Robinson, J.T. and Vlassiouk, I.V., Phys. Rev. B, 87 (2013) 041406.

[17] Egerton, R.F., "EELS in the Electron Microscope". (Plenum Press, 1986).

[18] Botton, G.A., L'Esperance, G., Gallerneault, C.E. and Ball, M.D., J. Microsc., 180 (1995) 217.

[19] Egerton, R.F. and Malac, M., J. Electron Spectrosc., 143 (2005) 43.

[20] Tanuma, S., "Surface Analysis by Auger and X-ray Photoelectron Spectroscopy" Eds. D. Briggs and J. T. Grant (IM Publications and Surface Spectra Ltd; Chichester and Manchester, 2003), p. 259.

[21] Jablonski, A. and Powell, C.J., J. Electron Spectrosc., 281 (2017) 1.

[22] Tanuma, S., Shiratori, T., Kimura, T., Goto, K., Ichimura, S. and Powell, C.J., Surf. Interface Anal., 37 (11) (2005) 833–45.

[23] Tanuma, S., Yoshikawa, H., Okamoto, N. and Goto, K., J. Surf. Anal., 15 (2) (2008) 195–99.

[24] Shinotsuka, H., Tanuma, S., Powell, C.J. and Penn, D.R., Surf. Interface Anal., 47 (9) (2015) 871–88.

 [25] https://delongamerica.com/.

[26] Kolosov, V.Y., Yushkova, A.A. and Bokuniaeva, A.O., AIP Conf. Proc., 2015, (2018) 020042.

[27] Kieft, E. and Bosch, E., J. Phys. D, 41 (2008) 215310.

[28] Agostinelli, S.,  Allison, J. , Amakoe, K. , Apostolakis, J. , Araujo, H., Arce, P.,  Asai, M.,  Axen, D.,  Banerjee, S.,  Barrand, G., Behner, F.,  Bellagamba, L.,  Boudreau, J.,  Broglia, L.,  Brunengo, A.,  Burkhardt, H.,  Chauvie, S., Chuma, J.,  Chytracek, R. and Cooperman, G., Nucl. Instrum. Meth. A, 506 (2003) 250.

[29] Mott, N.F. and Massey, H.S.W. “Theory of Atomic Collisions”. (Oxford University Press, London, 1965).

[30] Werner, W., Surf. Interface Anal., 31 (2001) 141.

[31] Palik, E.D., "Handbook of Optical Constants of Solids" (Academic, 1985).

[32] Walker, C.G.H., J. Matthew A.D. and El‐Gomati, M.M., Scanning, 36 (2014) 241.