JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

High-Resolution Powder Diffractometer Facility (HRPDF) for Low and Medium Power Research Reactor

Khalifeh AbuSaleem

 Department of Physics, The University of Jordan, Amman 11942, Jordan.

Corresponding Author:  K. AbuSaleem                                              Email: k.abuSaleem@ju.edu.jo

Doi: https://doi.org/10.47011/16.4.5

Cited by : Jordan J. Phys., 16 (4) (2023) 423-434

PDF

Received on: 11/09/2021;                                                             Accepted on: 03/03/2022

Abstract: The present paper suggests a design of a high-resolution powder diffractometer facility that fits the low and medium power research reactors. The design choice guarantees the acceptable cost of a high-standard facility. Some components can be created in-house, while the design also includes detailed information about the commercially available components. It is highly recommended to carry out Monte Carlo simulations of realistic expected luminosity and resolution parameters of the finally designed and approved instrument in advance. Monte Carlo simulations can eventually show which components should be modified in order to achieve the expected resolution and luminosity parameters of the facility.

Keywords: High-resolution powder diffractometer, Design, Construction, Low and medium research reactors.

 

References

[1] Li, G., "Introduction to Neutron Scattering", (Department of Physics Astronomy, University of Tennessee, Knoxville, 37996, 2008).

[2] Neylon, C., Eur. Biophys. J., 37 (5) (2008) 531-41.

[3] Desgranges, L. et al., Inorg. Chem., 48 (16) (2009) 7585.

[4] Yelon, W.B. and Hadjipanayis, G.C., IEEE Transactions on Magnetics, 28 (5) (1992) 2315.

[5] http://www.ujf.cas.cz/en/departments/department-of-neutron-physics/npl/.

[6] Oed, A., Nucl. Instrum. Meth. A, 263 (2–3) (1988) 351.

[7] ANSI/ASTM E230 or IEC 60584.

[8] Ohoyama, K. et al., Jpn. J. Appl. Phys., 37 (1998) 3319.

[9] https://www.jjxray.dk/p/neutron-soller-c`ollimator/.

[10] ER GmbH, ppa. Horst Dörner, Moosburger Str. 22, 85413 Hörgertshausen, Deutschland.

[11] Mirrotron Ltd., Konkoly Thege M. 29-33, H-1121 Budapest, Hungary.

[12] http://www.instrumentationassociates.com, Instrumentation Associates, 2 Davis Dr, Research Triangle Park, Durham, NC 27709 USA.

[13] Frank Laboratory of Neutron Physics, JINR, Dubna, Russia; http://flnph.jinr.ru/en/.

[14] https://product.item24.de/en/products/product-catalogue/products/profiles-1001009536/.

[15] Itoh, S. et al., "Recent Progress in TOP Spectrometer", (ICANS-XI International Collaboration on Advanced Neutron Sources, KEK, October 1990).

[16] Janis Research Co., LLC, 225 Wildwood Ave, Woburn, MA 01801.

[17] https://www.lakeshore.com/products/product-detail/janis/.

[18] http://www.janis.com/Applications/NeutronScattering.aspx.

[19] http://www.oxford-instruments.com/industries-and applications/research/neutron-scattering.

[20] Popovici, M. and Yelon, W.B., J. Neutron Res., 5 (4) (1997) 227.

[21] Wright, A.F. et al., Nucl. Instrum. Methods, 180 (1981) 655.

[22] Position-sensitive detection of slow neutrons: survey of fundamental principles, Proceedings of SPIE, Event: San Diego '92, San Diego, CA, United States, (1992).

[23] https://www.kanthal.com/en/products/material-datasheets/wire/na/kanthal-apmt/.

[24] http://www.julabo.com.

[25] Willendrup, P.K. and Lefmann, K., "McStas (i): Introduction, Use and Basic Principles for Ray-tracing Simulations", (2020) p1.

[26] IAEA-TECDOC-1234.

[27] AbuSaleem, K., Jordan J. Phys., 12 (3) (2019) 255.

[28] Rosdi, M.A.A. et al., IOP Conf. Ser.: Mater. Sci. Eng., 555 (2019) 012016.