JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Magnetization Plateaus of a Double Fullerene Core/Shell Like-Nanostructure in an External Magnetic Field: Monte Carlo Study

H. Eraki, N. Maaouni, Z. Fadil, A. Mhirech, B. Kabouchi,

L. Bahmad and  W. Ousi Benomar

 Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Faculty of Sciences, P.O. Box 1014, Mohammed V University in Rabat, Morocco.

Corresponding Author:  Z. Fadil                                                Email: fadilzakaria604@gmail.com

Doi: https://doi.org/10.47011/16.4.6

Cited by : Jordan J. Phys., 16 (4) (2023) 435-445

PDF

Received on: 13/11/2021;                                                Accepted on: 20/02/2022

Abstract: This paper concerns the investigation of the critical (HC) and the saturation (HS) magnetic fields behavior of the studied system as a function of different physical parameters. The Monte Carlo method is used to study the magnetic properties of the ferrimagnetic behavior of a double fullerene X60 core/shell-like nanostructure. Based on the Ising model, we focus our study on a system formed by a double sphere core/shell. The two spheres contain the spins s = ± 1/2 in the core surrounded by the spin S = ± 1, 0 in the shell. Various types of magnetization curves have been established, depending on the competition among the exchange couplings, the crystal fields, and the temperature. The study reveals that the saturation magnetic field (Hs) is significantly influenced by variations in all exchange coupling parameters, whereas the critical magnetic field (Hc) is only mildly affected by these parameter variations. Moreover, the crystal field and temperature both influence the critical and saturation magnetic fields.

Keywords: Double fullerene core/shell-like structure, Magnetization plateaus, Monte Carlo simulations, Critical and saturation fields, External magnetic field.

 

References

[1] Abhijit, R., Asian J. Pharm. Res., 2 (2012) 47.

[2] Enyashin, A. N. and Ivanovskii, A. L., Chem. Phys. Lett., 473 (2009) 108.

[3] Iyakutti, K., Rajarajeswari, M. and Kawazoe, Y., Physica B, 405 (2010) 3324.

[4] Zhao, C-X., Yang, Y-Q., Niu, C-Y., Wang, J-Q. and Jia, Y., Comput. Mater. Sci., 160 (2019) 115.

[5] Lv, Y., Wang, H., Guo, Y., Jiang, B. and Cai, Y., Comput. Mater. Sci., 144 (2018) 170.

[6] Zhu, X., Yan, H., Wang, X., Zhang, M. and Wei, Q., Results Phys., 15 (2019) 102738.

[7] Terrones, M. et al., Nano Today, 5 (2010) 351.

[8] Lusk, M.T. and Carr, L.D., Carbon, 47 (2009) 2226.

 
 

[9] Lekakh, S.N., Zhang, X., Tucker, W., Lee, H.K., Selly, T. and Schiffbauer, J.D., Mater. Charact., 158 (2019) 109991.

[10] Ma, R., Zhou, Y., Bi, H., Yang, M., Wang, J., Liu, Q. and Huang, F., Prog. Mater. Sci., (2020) 100665. (in proof)

[11] Adhikari, S. and Chowdhury, R., Phys. Lett. A, 375 (2011) 2166.

[12] Satoh, M. and Takayanagi, I., J. Pharmacol. Sci., 100 (2006) 513.

[13] Pan, Y., Liu, X., Zhang, W., Liu, Z., Zeng, G., Shao, B., Liang, Q., He, Q., Yuan, X., Huang, D. and Chen, M., Appl. Catal. B-Environ., 265 (2020) 118579.

[14] Konno, T., Wakahara, T., Miyazawa, K. and Marumoto, K., New Carbon Mater., 33 (2018) 310.

[15] Ahmad, S., Chem. Phys. Lett., 713 (2018) 52.

[16] Tapia, J.I., Larios, E., Bittencourt, C., Yacamán, M.J. and Quintana, M., Carbon, 99 (2016) 541.

[17] Bondavalli, P., “Graphene and Related Nanomaterials: Properties and Applications”, (Elsevier, 2018).

[18] Sachdeva, S., Singh, D. and Tripathi, S.K., Opt. Mater., 101 (2020) 109717.

[19] Borisova, P.A., Blanter, M.S., Brazhkin, V.V., Lyapin, S.G., Somenkov, V.A., Filonenko, V.P., Trenikhin, M.V. and Presniakov, M.Yu., Diam. Relat. Mater., 85 (2018) 74.

[20] Smalley, R.E., Rev. Mod. Phys., 69 (1997) 723.

[21] Avent, A.G., Benito, A.M., Birkett, P.R., Darwish, A.D., Hitchcock, P.B., Kroto, H.W., Locke, I.W., Meidine, M.F., O'Donovan, B.F., Prassides, K., Taylor, R., Walton, D.R.M. and van Wijnkoop, M., J. Mol. Struct., 436–437 (1997) 1.

[22] Tang, Y., Li, J., Du, P., Zhang, H., Zheng, C., Lin, H., Du, X. and Tao, S., Org.  Electron., 83 (2020) 105747.

[23] Heredia, A-D., Durantini, A-M., Durantini, J-E. and Durantini, E-N., J. Photoch. Photobio. C, 51 (2022) 100471.

[24] Wu, B-S., An, M-W., Chen, J-M., Xing, Z., Chen, Z-C., Deng, L-L., Tian, H-R., Yun,   D-Q., Xie, S-Y. and Zheng, L-S., Cell Rep. Phys. Sci., 2 (2021) 100646.

[25] Kantar, E., Solid State Commun., 263 (2017) 31.

[26] Sharoyko, V-V., Shemchuk, O-S., Meshcheriakov, A-A., Vasina, L-V., Iamalova, N-R., Luttsev, M-D., Ivanova,     D-A., Petrov, A-V., Maystrenko, D-N., Molchanov, O-E. and Semenov, K-N., Nanomed.-Nanotechnol., 40 (2022) 102500.

[27] Sun, H., Chen, F. and Chen, Z-K., Mater. Today, 24 (2019) 94.

[28] Kuznietsova, H-M., Dziubenko, N-V., Lynchak, O-V., Herheliuk, T-S., Zavalny,   D-K., Remeniak, O-V., Prylutskyy, Y-I. and Ritter, U., Digest. Dis. Sci., 65 (2020) 215.

[29] Yan, Y., Zhang, K., Wang, H., Liu, W., Zhang, Z., Liu, J. and Shi, J., Colloid Surface B, 186 (2020) 110700.

[30] Bernal Texca, F.G., Chigo-Anota, E., Tepech Carrillo, L. and Castro, M., Comput. Theor. Chem., 1103 (2017) 1.

[31] Zhang, Y., Zhang, C-R., Yuan, L-H., Zhang, M-L., Chen, Y-H., Liu, Z-J. and Chen,  H-S., Mater. Chem. Phys., 204 (2018) 95.

[32] Benatto, L., Marchiori, C-F-N., Talka, T., Aramini, M., Yamamoto, N-A-D., Huotari, S., Roman, L-S. and Koehler, M., Thin Solid Films, 697 (2020) 137827.

[33] Meng, Q-Y., Zhang, B. and Wang, D-L., Comput. Theor. Chem., 1173 (2020) 112672.

[34] Goodarzi, S., Ros, T-D., Conde, J., Sefat, F. and Mozafari, M., Mater. Today, 20 (2017) 460.

[35] Lu, X., Cui, M., Pan, X., Wang, P. and Sun, L., Appl. Surf. Sci., 503 (2020) 144328.

[36] Moodie, J.C., Kainth, M., Robson, M.R. and Long, M.W., Physica A, 541 (2020) 123276.

[37] Ertaş, M. and Keskin, M., Physica A, 526 (2019) 120933.

[38] Freitas, A.S., Douglas, F., Fittipaldi, I.P. and Moreno, N.O., J. Magn. Magn. Mater., 362 (2014) 226.

[39] Berkai, Z., Daoudi, M., Mendil, N. and Belghachi, A., Phys. Lett. A, 383 (2019) 2090.

[40] Maaouni, N., Qajjour, M., Mhirech, A., Kabouchi, B., Bahmad L. and Ousi Benomar, W., J. Magn. Magn. Mater., 468 (2018) 175.

[41] Qajjour, M., Maaouni, N., Fadil, Z., Mhirech, A., Kabouchi, B., Ousi Benomar, W. and Bahmad, L., Chinese J. Phys., 63 (2020) 36.

[42] Fadil, Z., Qajjour, M., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Physica B, 564 (2019) 104.

[43] Benhouria, Y., Essaoudi, I., Ainane, A. and Ahuja, R., Physica E, 108 (2019) 191.

[44] Wang, J.M., Jiang, W., Zhou, C.L., Shi, Z. and Wu, C., Superlattice Microst., 102 (2017) 359.

[45] Fadil, Z., Maaouni, N., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Braz. J. Phys., 50 (2020) 716.

[46] Fadil, Z., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Phys. Lett. A, 384 (2020) 126783.

[47] Moujaes, E-A., Aguiar, L-V. and Abou Ghantous, M., J. Magn. Magn. Mater., 423 (2017) 359.

[48] Fadil, Z., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Chinese J. Phys., 67 (2020) 123.

[49] Jander, P., Santos, F.C. and Barreto, S., J. Magn. Magn. Mater., 439 (2017) 114.

[50] Wu, C., Shi, K.L., Zhang, Y. and Jiang, W., J. Magn. Magn. Mater., 465 (2018) 114.

[51] Fadil, Z., Qajjour, M., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Ferroelectrics, 573 (2021) 141.

[52] Fadil, Z., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Chinese J. Phys., 64 (2020) 295.

[53] Aouini, S., Mhirech, A., Alaoui-Ismaili, A. and Bahmad, L., Chinese J. Phys., 59 (2019) 346.

[54] Fadil, Z., Mhirech, A., Kabouchi, B., Bahmad, L. and Ousi Benomar, W., Integr. Ferroelectr., 213 (2021) 146.

[55] Wang, Z., Li, Q., Wang, F., Sun, L., Tian, M. and Wang, W., Superlattice Microst., 136 (2019) 106293.

[56] Bonetti, E., Fabrice, M. and Fremond, M., J. Math. Anal. Appl., 384 (2011) 561.