JJP » JJP Issues
 Jordanian Journals
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address


10 Hz Stable Mode-locked Er-Fiber Laser

F. Qamar

 Physics Department, Faculty of Sciences, Damascus University, Damascus, Syria.

Corresponding Author:  Fadi Qamar                                  Email: fadiqamar@Hotmail.com


Doi: https://doi.org/10.47011/16.4.7

Cited by : Jordan J. Phys., 16 (4) (2023) 447-455


Received on: 22/11/2021;                                                              Accepted on: 21/03/2022

Abstract: In this paper, a stable output at the reduction repetition rate from 80 MHz mode-locked Er-doped fiber laser (EDFL) was demonstrated by adjusting the operating point for external LiNbO3 Mach-Zehnder electro-optic intensity modulator to suppress harmonic mode-locked pulses. More than 70% of the laser beam was launched into the external pigtail Mach-Zehnder intensity modulator using single mode fiber with collimating lens and fiber (ferrule connector) FC adapter. The optimum values of Mach-Zehnder modulator bias voltages V0 and Vπ (half wave voltage) which resulted in maximum and minimum laser output power to leave the modulator were found at 6.5 and 0.29 V, respectively. The best modulation was achieved for the RF modulating signal with an opening time of about 8 ns. For driving voltage equal to Vπ, a clean mode-locked pulse train was generated with a pulse shape and energy similar to the input pulse, albeit with a low repetition rate. The minimum repetition rate reached as low as 10 Hz, resulting in pulse energy and peak power of 0.32 nJ and 1.5 kW, respectively. Second-harmonic generation of the low repetition rate pulse train was also produced by using a PPLN crystal. This opens up the potential for using this laser in single photon detection experiments and as a seed laser for many applications.

Keywords: Er-fiber laser, Passively mode-locked fiber laser, Nonlinear polarization rotation, Mach-Zehnder modulator, Fast electro-optic modulator.

PACS: Fiber lasers, 42.55.Wd, Mode locking, 42.60.Fc.



[1] Anderson, D., Desaix, M., Lisak, M. and Quiroga-Teixeiro, M.L., J. Opt. Soc. Am. B, 9 (8) (1992) 1358.

[2] Chong, A., Buckley, J., Renninger, W. and Wise, F., Opt. Exp., 14 (21) (2006) 10095.

[3] Haus, H.A., Tamura, K., Nelson, L.E. and Ippen, E.P., IEEE J. Quantum Electron., 31 (3) (1995) 591.

[4] Li, J., Andrekson, P.A. and Bakhshi, B., IEEE Photon. Tech. Lett., 12 (9) (2000) 1150.

[5] Nakazawa, M. and Yoshida, E., IEEE Photon. Tech. Lett., 12 (12) (2000) 1613.

[6] Zhang, M., Chen, L.L., Zhou, C., Cai, Y., Ren, L. and Zhang, Z.G., Las. Phys. Lett., 6 (9) (2009) 657.

[7] Fourmaux, S., Serbanescu, C., Kincaid, R.E., Krol, Jr.A. and Kieffer, J.C., Appl. Phys. B, 94 (4) (2008) 569.

[8] Baumler, W., Schmalzl, A.X., Gobi, G. and Penzkofer, A., Meas. Sci. Technol., 3 (1992) 384.

[9] Saliminia, A., Nguyen, N., Nadeau, M., Petit, S., Chin, S. and Vallée, R., J. Appl. Phys., 93 (2003) 3724.

[10] Green, W., Rooks, M., Sekaric, L. and Vlasov, Y., Opt. Exp., 15 (25) (2007) 17106.

[11] Zhang, G. and Cheng, G., Appl. Opt., 54 (30) (2015) 8957.

[12] Li, M., Wang, L., Li, X., Xiao, X. and Yu, Sh., Photonics Res., 6 (2) (2018) 109.

[13] Chen, A. and Murphy, E.J., “Broadband optical Modulators - Science, Technology and Applications”, (CRC Press, 2012).

[14] Svarny, J., Proc. BEC, Tallinn, Estonia, (2010) 231.

[15] Svarny, J. and Chladek, S., J. Lightwave Technol., Early Access (2021).

[16] Wang, R., Dai, Y., Yin, F., Xu, K., Yan, L., Li, J. and Lin, J., Opt. Exp., 21 (18) (2013) 209.

[17] DePriest, C., Yilmaz, T., Delfyett, P., Etemad, S., Braun, A. and Abeles, J., Opt. Lett., 27 (9) (2002) 719.

[18] Pan, S. and Lou, C., IEEE Photon. Techn. Lett., 18 (13) (2006) 1451.

[19] Jain, A., Chandra, N., Anchal, A. and Kumar, P., Opt. & Las. Tech., 83 (2016) 189.