JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Tunable Harmonics Generation from Low Average Power Mode-Locked Er-Fiber Laser Using Periodic Poling Nonlinear Crystals

F. Qamar

 Physics Department, Faculty of Sciences, Damascus University, Damascus, Syria.

Corresponding Author:  Fadi Qamar                                  Email: fadiqamar@Hotmail.com

Doi: https://doi.org/10.47011/16.4.8

Cited by : Jordan J. Phys., 16 (4) (2023) 457-465

PDF

Received on: 22/11/2021;                                                              Accepted on: 20/02/2022

Abstract: Sufficient second, third, and fourth harmonic generation of mode-locked Er-doped fiber laser (ML - EDFL) was experimentally demonstrated. This was achieved by using periodically poled KTiOPO4 (PPKTP) and PP LiNbO3 (PPLN) PPLN nonlinear crystals. Harmonic generation in both crystals depended on the direction of polarization. The highest conversion efficiency was obtained by using a half-wave plate to rotate the polarization before the crystals. When using the PPKTP nonlinear crystal, conversion efficiencies of 4.88%, 0.02%, and 0.002% were obtained for second, third, and fourth harmonics generation at wavelengths of 980, 520, and 390 nm, respectively. For the PPLN nonlinear crystal, temperature and polarization direction were optimized for each harmonic generation wavelength. As a result, conversion efficiencies of 8.6%, 0.1%, and 0.007% were obtained for second, third, and fourth harmonic generation at the same respective wavelengths. Tunable wavelength ranges and their SHGs, as well as the multi-wavelength output and their corresponding SHG wavelengths, were also reported.

Keywords: Er-fiber laser, Passive mode-locked fiber laser, Nonlinear polarization rotation, PPKTP, PPLN, SHG, THG, FHG.

PACS: Fiber lasers, 42.55.Wd, Mode locking, 42.60.Fc.

 

References

[1] Lee, J. et al., Proc. SPIE, 4657 (2002) 138.

[2] Niven, G., Opto and Laser Europe, 142 (2006) 33.

[3] Kontur, F.J., Dajani, I., Lu, Y. and Knize, R.J., Opt. Express, 15 (20) (2007) 12882.

[4] Tovstonog, S.V., Kurimura, S. and Kitamura, K., Appl. Phys. Lett., 90 (5) (2007).

[5] Thompson, R.J., Tu, M., Aveline, D.C., Lundblad, N. and Maleki, L., Opt. Express, 11 (14) (2003) 1713.

[6] Armstron, J.A., Bloembergen, N., Ducuing, J. and Pershan, P.S., Phys. Rev., 127 (6) (1962) 1918.

[7] Miller, G.D., Batchko, R.G., Tulloch, W.M., Weise, D.R., Fejer, M.M. and Byer, R.L., Opt. Lett., 22 (24) (1997) 1834.

[8] Ferraro, P., Grilli, S. and De Natale, P., Springer Series in Materials Science, 2014 (2014) 453.

[9] Ferraro, P. and Grilli, S., Appl. Phys. Lett., 89 (13) (2006).

[10] Moutzouris, K., Sotier, F., Adler, F. and Leitenstorfer, A., Opt. Express, 14 (5) (2006) 1905.

[11] Wen, X., Han Y. and Wang J., Laser Phys., 26 (4) (2016) 1.

[12] Wong, K.K. “Properties of Lithium Niobate”, (INSPEC, Edison, 2002).

[13] Rao, A., Abdelsalam, K., Sjaardema, T., Honardoost, A., Camacho-gonzalez, G.F,. and Fathpour, S., Opt. Express, 27 (18) (2019) 25920.

[14] Lesko, D.M.B., Timmers, H., Xing, S., Kowligy, A., Lind, A.J. and Diddams, S.A., Nat. Photonics, 15 (2021) 281.

[15] Bryan, D.A., Gerson, R. and Tomaschke, H.E., Appl. Phys. Lett., 44 (9) (1984) 847.

[16] Grilli, S., Ferraro, P., Natale, P., De Tiribilli, B. and Vassalli, M., Appl. Phys. Lett., 87 (23) (2005).

[17] Galvanauskas, A., Arbore, M.A., Fejer, M.M., Fermann, M.E. and Harter, D., Opt. Lett., 22 (2) (1997).

[18] Arbore, M.A., Fejer, M.M., Fermann, M.E., Hariharan, A., Galvanauskas, A. and Harter, D., Opt. Lett., 22 (1) (1997) 13.

[19] Champert, P.A., Popov, S.V. and Taylor, J.R., Opt. Lett., 27 (2) (2002) 122.