JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Numerical Simulation of Optimal Entanglement Network Protocols for Multiple States

Daegene Song

 Department of Management Information Systems, Chungbuk National University, Cheongju, Korea.

Corresponding Author:  Daegene Song                                              Email: dsong@cbnu.ac.kr

Doi: https://doi.org/10.47011/16.4.9

Cited by : Jordan J. Phys., 16 (4) (2023) 467-474

PDF

Received on: 09/12/2021;                                                              Accepted on: 06/03/2022

Abstract: Entanglement has been one of the dominant aspects distinguishing quantum theory from its classical counterpart. Indeed, entanglement has played a central role in recent developments in quantum technology, such as quantum computing, key distribution, etc. In order to use entanglement in these situations, a particular form is often needed, namely the maximal case. Various techniques have been used to manipulate entangled states, especially between distant parties. Generating long-distance entanglement from multiple shorter states has been studied, and it has been shown that there exists a class of states that can achieve optimal entanglement resources. In this paper, the particular class of states that yields the weakest link is numerically examined. The findings reveal that the range of this class is limited but substantial.

Keywords: Quantum entanglement, Numerical methods, Maximal states.

 

References

[1] Bell, J.S., Phys., 1 (1964) 195.

[2] Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H. and Gisin, N., Phys. Rev. A, 57 (1998) 3229.

[3] Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R. and Zeilinger, A., Nature, 489 (2012) 269.

[4] Ekert, A., Phys. Rev. Lett., 67 (1991) 661.

[5] Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. and O’Brienet, J.L., Nature 464 (2010) 45.

[6] Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng C.-Z. and Pan, J.-W., Nature, 488 (2012) 185.

[7] Yin, J. et al., Science, 356 (2017) 1140.

[8] Aspect, A., Dalibard, J. and Roger, G., Phys. Rev. Lett., 49 (1982) 1804.

[9] Gisin, N., Phys. Lett. A, 242 (1998) 1.

[10] Ghirardi, G., Rimini, A. and Weber, T., Lettere al Nuovo Cimento, 27 (1980) 293.

[11] Gisin, N., Helv. Phys. Acta, 62 (1989) 363.

[12] Bruss, D., D'Ariano, Macchiavello, D. and Sacchi, M.F., Phys. Rev. A, 62 (2000) 062302.

[13] Song, D. and Hardy, L., Phys. Lett. A, 259 (1999) 331.

[14] Wootters, W.K. and Zurek, W.H., Nature, 299 (1982) 802.

[15] Buzek, V. and Hillery, M., Phys. Rev. A, 54 (1996) 1844.

[16] Duan, L.-M. and Guo, G.-C., Phys. Rev. Lett., 80 (1998) 4999.

[17] Bennett, C.H., Bernstein, H.J., Popescu, S. and Schumacher, B., Phys. Rev. A, 53 (1996) 2046.

[18] Hardy, L., Phys. Rev. A, 60 (1999) 1912.

[19] Zukowski, M., Zeilinger, A., Horne, M.A. and Ekert, A.K., Phys. Rev. Lett., 71 (1993) 4287.

[20] Bose, S., Vedral, V. and Knight, P.L., Phys. Rev. A, 57 (1998) 822.

[21] Shi, B.-S., Jiang, Y. and Guo, G.-C., Phys. Rev. A, 62 (2000) 054301.

[22] Hardy, L. and Song, D., Phys. Rev. A, 62 (1999) 052315.