Thermoelectric Properties
of ALiF3
(A= Ca, Sr and
Ba):
First-Principles
Calculation
Nada T. Mahmouda,
Ahmad A. Mousab
and Jamil M.
Khalifeha*
a
Physics
Department, The
University of
Jordan,
11942-Amman,
Jordan.
jkalifa@ju.edu.jo
b
Middle East
University (MEU),
11831-Amman,
Jordan.
Doi :
10.47011/13.1.8
Cited by :
Jordan J. Phys.,
13 (1) (2020)
79-86
PDF
Received
on:
28/10/2019;
Accepted
on:
4/3/2020
Abstract:
The
energy
band
structure
obtained
from
WIEN2k
calculations
is used
to
calculate
the
transport
coefficients
via
the
semi-classical
Boltzmann
transport
theory
with
constant
relaxation
time (t)
as
employed
in the
BoltzTraP
package
for ALiF3(A=
Ca, Sr
and Ba)
using
mBJ-GGA
potential.
The
thermoelectric
properties
of the
above
compounds
are
investigated
through
the
calculation
of the
main
transport
properties:
Seebeck
coefficient
(S),
electrical
(s)
and
electronic
thermal
(ke)
conductivity,
figure
of merit
(ZT) and
power
factor.
All
compounds
show
insulating
behavior.
Keywords:
Fluoroperovskite,
Band
gap,
BoltzTraP,
Thermoelectric
properties,
Figure
of merit.
References
[1] Zheng, X.,
Liu, C., Yan, Y.
and Wang, Q.,
Renew. Sustain.
Energy Rev., 32
(2014) 486.
[2] Twaha, S.,
Zhu, J., Yan, Y.
and Li, B.,
Renew. Sustain.
Energy Rev., 65
(2016) 698.
[3] Koumoto,
K., Terasaki, I.
and Funahashi,
R., Mater. Res.
Soc. Bull., 31
(3) (2006) 206.
[4] Koumoto,
K., Wang,Y.,
Zhang, R.,
Kosuga, A. and
Funahashi, R.,
Annu. Rev.
Mater. Res., 40
(2010) 363.
[5] Rogl, G.
and Rogl, P.,
Green Sustain.
Chem., 4 (2017)
50.
[6] Rull-Bravo,
M., Moure, A.,
Fernandez, J.
and
Martin-Gonzalez,
M., RSC Adv., 5
(52) (2015)
41653.
[7] Iversen,
B.B., Palmqvist,
A.E., Cox, D.E.,
Nolas, G.S.,
Stucky, G.D.,
Blake, N.P. and
Metiu, H., J.
Solid State
Chem., 149 (2)
(2000) 455.
[8]
Norouzzadeh, P.,
Myles, C.W. and
Vashaee, D.,
Sci. Rep., 4
(2014) 7028.
[9]
Kangsabanik, J.
and Alam, A., J.
Mater. Chem. A,
5 (13) (2017)
6131.
[10] Zhao, D.,
Wang, L., Bo, L.
and Wu, D.,
Metals, 8 (1)
(2018) 61.
[11] Mousa,
A.A., Mahmoud,
N.T. and
Khalifeh, J.M.,
Computational
Materials
Science, 79
(2013) 201.
[12] Mahmoud,
N.T., Khalifeh,
J.M. and Mousa,
A.A., Physica B:
Condensed
Matter, 564
(2019) 37.
[13] Ali, A., Ur
Rahman, A. and
Rahman, G.,
Physica B:
Condensed
Matter, 565 (15)
(2019) 18.
[14]
Kohn,
W.
and Sham, L.J.,
Phys. Rev., 140A
(1965) 1133.
[15] Blaha,
P., Schwarz, K.,
Madsen, G.,
Kvasnika, D. and
Luitz, K.,
"WIEN2k",
(Technical
Universit t Wien,
Austria, 2001).
ISBN3-9501031-
1-2.
[16] Blaha,
P., Schwarz, K.,
Sorantin, P. and
Trickey, S.B.,
Comput. Phys.
Commun., 59 (2)
(1990) 399.
[17] Tran, F.
and Blaha, P.,
Phys.
Rev. Lett., 102
(1-2) (2009)
226401.
[18] Murnaghan,
F.D., Proc.
Natl. Acad.
Sci., 30 (1944)
244.
[19]
Alrahamneha, M.J.,
Mousa, A.A. and
Khalifeh, J.M.,
Physica B:
Condensed
Matter, 552
(2019) 227.
[20] Madsen, G.K.
and Singh, D.J.,
Computer Physics
Communications,
175 (1) (2006)
67.
[21] Mahan, G.
and Sofo, J.,
Proceedings of
the National
Academy of
Sciences, 93
(15) (1996)
7436.
[22] Goldsmid,
H., British
Journal of
Applied Physics,
11 (6) (1960)
209.
[23] Mahmoud,
N.T., Khalifeh,
J.M. and Mousa,
A.A.,
Computational
Condensed
Matter, 21
(2019) e00432.
[24] Arcroft,
N.W. and Mermin,
N.D., "Solid
state physics",
(New York :
Holt, Rinehart
and Winston,
1976).
[25] Tan, X.,
Devlin, K.P.,
Deng, X., Kang,
C. and Croft,
M., Chem.
Mater., 30
(2018) 4207.
[26] Baranowski,
L.L., Toberer,
E.S. and Snyder,
G.J., Journal of
Applied Physics,
115 (2013)
126102.
|