JJP ยป JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

Thermoelectric Properties of ALiF3 (A= Ca, Sr and Ba): First-Principles Calculation

Nada T. Mahmouda, Ahmad A. Mousab and Jamil M. Khalifeha*

 a Physics Department, The University of Jordan, 11942-Amman, Jordan. jkalifa@ju.edu.jo

b Middle East University (MEU), 11831-Amman, Jordan.

Doi : 10.47011/13.1.8

Cited by : Jordan J. Phys., 13 (1) (2020) 79-86

PDF

Received on: 28/10/2019;                                                                  Accepted on: 4/3/2020

 Abstract: The energy band structure obtained from WIEN2k calculations is used to calculate the transport coefficients via the semi-classical Boltzmann transport theory with constant relaxation time (t) as employed in the BoltzTraP package for ALiF3(A= Ca, Sr and Ba) using mBJ-GGA potential. The thermoelectric properties of the above compounds are investigated through the calculation of the main transport properties: Seebeck coefficient (S), electrical (s) and electronic thermal (ke) conductivity, figure of merit (ZT) and power factor. All compounds show insulating behavior.

Keywords: Fluoroperovskite, Band gap, BoltzTraP, Thermoelectric properties, Figure of merit.

 

References

[1] Zheng, X., Liu, C., Yan, Y. and Wang, Q., Renew. Sustain. Energy Rev., 32 (2014) 486.

[2] Twaha, S., Zhu, J., Yan, Y. and Li, B., Renew. Sustain. Energy Rev., 65 (2016) 698.

[3] Koumoto, K., Terasaki, I. and Funahashi, R., Mater. Res. Soc. Bull., 31 (3) (2006) 206.

[4] Koumoto, K., Wang,Y., Zhang, R., Kosuga, A. and Funahashi, R., Annu. Rev. Mater. Res., 40 (2010) 363.

[5] Rogl, G. and Rogl, P., Green Sustain. Chem., 4 (2017) 50.

[6] Rull-Bravo, M., Moure, A., Fernandez, J. and Martin-Gonzalez, M., RSC Adv., 5 (52) (2015) 41653.

[7] Iversen, B.B., Palmqvist, A.E., Cox, D.E., Nolas, G.S., Stucky, G.D., Blake, N.P. and Metiu, H., J. Solid State Chem., 149 (2) (2000) 455.

[8] Norouzzadeh, P., Myles, C.W. and Vashaee, D., Sci. Rep., 4 (2014) 7028.

[9] Kangsabanik, J. and Alam, A., J. Mater. Chem. A, 5 (13) (2017) 6131.

[10] Zhao, D., Wang, L., Bo, L. and Wu, D., Metals, 8 (1) (2018) 61.

[11] Mousa, A.A., Mahmoud, N.T. and Khalifeh, J.M., Computational Materials Science, 79 (2013) 201.

[12] Mahmoud, N.T., Khalifeh, J.M. and Mousa, A.A., Physica B: Condensed Matter, 564 (2019) 37.

[13] Ali, A., Ur Rahman, A. and Rahman, G., Physica B: Condensed Matter, 565 (15) (2019) 18.

[14] Kohn, W. and Sham, L.J., Phys. Rev., 140A (1965) 1133.

[15] Blaha, P., Schwarz, K., Madsen, G., Kvasnika, D. and Luitz, K., "WIEN2k", (Technical Universitt Wien, Austria, 2001). ISBN3-9501031- 1-2.

[16] Blaha, P., Schwarz, K., Sorantin, P. and Trickey, S.B., Comput. Phys. Commun., 59 (2) (1990) 399.

[17] Tran, F. and Blaha, P., Phys. Rev. Lett., 102 (1-2) (2009) 226401.

[18] Murnaghan, F.D., Proc. Natl. Acad. Sci., 30 (1944) 244.

[19] Alrahamneha, M.J., Mousa, A.A. and Khalifeh, J.M., Physica B: Condensed Matter, 552 (2019) 227.

[20] Madsen, G.K. and Singh, D.J., Computer Physics Communications, 175 (1) (2006) 67.

[21] Mahan, G. and Sofo, J., Proceedings of the National Academy of Sciences, 93 (15) (1996) 7436.

[22] Goldsmid, H., British Journal of Applied Physics, 11 (6) (1960) 209.

[23] Mahmoud, N.T., Khalifeh, J.M. and Mousa, A.A., Computational Condensed Matter, 21 (2019) e00432.

[24] Arcroft, N.W. and Mermin, N.D., "Solid state physics", (New York : Holt, Rinehart and Winston, 1976).

[25] Tan, X., Devlin, K.P., Deng, X., Kang, C. and Croft, M., Chem. Mater., 30 (2018) 4207.

[26] Baranowski, L.L., Toberer, E.S. and Snyder, G.J., Journal of Applied Physics, 115 (2013) 126102.