JJP » JJP Issues
 
 Jordanian Journals
Home
Editorial Board
International Advisory Board
Manuscript Organization
Instructions to Authors
Publication Ethics  
JJP Issues  
Contact Address
 

 

High Efficiency of Solar Cell Model Based on Two Types of Nanoparticles

Kholoud Kh. Abushaara*,  Mohammed M. Shabata, Dena M. El-Amassia and Daniel M. Schaadtb

 aDepartement of Physics, Islamic University of Gaza, P.O. Box 108, Gaza Strip, Palestine.  abushaar_kh@hotmail.com

bInstitute of Energy Research and Physical Technologies, Clausthal University of Technology, Leibnizstr. 4, 38678 Clausthal-Zellerfeld, Germany..

Doi : 10.47011/13.1.9

Cited by : Jordan J. Phys., 13 (1) (2020) 87-92

PDF

Received on: 02/07/2019;                                                             Accepted on: 13/10/2019

 Abstract: Novel solar cell structure based on multi-type nanoparticles layer has been investigated. The transmission and reflection of the incident light have been computed by the Transfer Matrix Method for different physical parameters of the structure and the numerical results are obtained by Maple program software. We found that the types of nanoparticles on the proposed anti-reflective (AR) structure have effectively enhanced transmission and minimized reflection.

Keywords: Anti-reflective, Metallic, Nanoparticles, Reflection, Solar cell, Transmission.

 

References

[1] Green, M.A., "Solar Cells: Operating Principles, Technology and System Applications", (Prentice Hall. 1982).

[2] Hamouche, H. and Shabat, M.M., Applied Physics A, 122 (7) (2016) 1.

[3] Hamouche, H., Shabat, M.M. and Schaadt, D.M., Superlattices and Microstructures, 101 (2017) 633.

[4] Chen, L.F., Ong, C.K. and Tan, G.T.G., Journal of Material Science, 33 (1998) 5891.

[5] Hamouche, H. and Shabat, M.M., Optical and Quantum Electronics, 50 (448) (2018) 1.

[6] Würfel, P. and Würfel, U., "Physics of Solar Cells: from Basic Principles to Advanced Concepts", (John Wiley & Sons, 2009).

[7] ] Ubeid, M.F. and Shabat, M.M., Journal of Nanoelectronics and Optoelectronics, 13 (2018) 1175.

[8] Ubeid, M.F. and Shabat, M.M., Journal of Modern Optics, 64 (4) (2017) 374.

[9] Schaadt, D.M., Feng, B. and Yu, E.T., Applied Physics Letters, 86 (2005) 063106.

[10] Shabat, M.M., El-Amassi, D.M. and Schaadt, D.M., Solar Energy Journal, 137 (2016) 409.

[11] Mousa, H.M. et al., Modern Physics Letters B, 32 (15) (2018) 1850163.

[12] Sun, Y. and Xia, Y., Science, 298 (5601) (2002) 2176.

[13] Pillai, S., Catchpole, K.R., Trupke, T. and Green, M.A., J. Appl. Phys., 101 (2007) 093105.

[14] Juan, F.C., Chaverri-Ramos, C. and Connolly, J., Journal of Renewable and Sustainable Energy, 5 (3) (2013) 033116.

[15] Hägglund, C., Zäch, M., Petersson, G. and Kasemo, B., Appl. Phys. Lett., 92 (2008) 053110.

[16] Atwater, H.A. and Polman, A., Nature Materials, 9 (3) (2010) 213.

[17] Mousa, H.M., Shabat, M.M. and Ouda, A.K., J. Science and Engineering, B7 (2017) 229.

[18] Qu, D., Liu, F., Yu, J., Xie, W., Xu, Q., Li, X. and Huang, Y., Appl. Phys. Lett., 98 (2011) 113119.

[19] McFarland, A.D. and van Duyne, R.P., Nano Lett., 3 (8) (2003) 7433.

[20] El-Khozondar, H., Alshembari, A.A., Shabat, M.M. and Koch, A., Optik, 181 (2019) 933.

[21] Shabat, M.M., El-Khozondar, H.J. and AlShembari, A.A., Modern Physics Letters B, 32 (28) (2018) 1850346.